scholarly journals Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1379 ◽  
Author(s):  
Sarah Stewart ◽  
Juan Domínguez-Robles ◽  
Ryan Donnelly ◽  
Eneko Larrañeta

The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.

Author(s):  
Sagar T. Malsane ◽  
Smita S. Aher ◽  
R. B. Saudagar

Oral route is presently the gold standard in the pharmaceutical industry where it is regarded as the safest, most economical and most convenient method of drug delivery resulting in highest patient compliance. Over the past three decades, orally disintegrating tablets (FDTs) have gained considerable attention due to patient compliance. Usually, elderly people experience difficulty in swallowing the conventional dosage forms like tablets, capsules, solutions and suspensions because of tremors of extremities and dysphagia. In some cases such as motion sickness, sudden episodes of allergic attack or coughing, and an unavailability of water, swallowing conventional tablets may be difficult. One such problem can be solved in the novel drug delivery system by formulating “Fast dissolving tablets” (FDTs) which disintegrates or dissolves rapidly without water within few seconds in the mouth due to the action of superdisintegrant or maximizing pore structure in the formulation. The review describes the various formulation aspects, superdisintegrants employed and technologies developed for FDTs, along with various excipients, evaluation tests, marketed formulation and drugs used in this research area.


2020 ◽  
Vol 11 (11) ◽  
pp. 713-732
Author(s):  
Abhishek Kanugo ◽  
Ambikanandan Misra

The advancement of the oral route for macromolecules has gained a lot of attention due to its noninvasive nature, safe and challenging in active research but with limited success. Oral administration poses challenges due to poor solubility, short half-life, quick elimination and the physical, chemical and biological barriers of the gastrointestinal tract. Approaches of past for improving oral absorption, such as enhancers, mucoadhesive delivery and enzyme inhibitors have been taken over by novel approaches like advanced liposomes, self-nanoemulsifying drug delivery system, nanoparticles and targeted delivery. Eudratech™ Pep, Peptelligence, Rani Pill and Pharm Film are the emerging technologies for delivering oral proteins and peptide. Calcitonin, semaglutide and octreotide are the peptides available in the market for oral delivery as outcomes of these technologies.


2020 ◽  
Vol 10 (2) ◽  
pp. 149-163
Author(s):  
Atul Jain ◽  
Teenu Sharma ◽  
Sumant Saini ◽  
Om Prakash Katare ◽  
Vandana. Soni ◽  
...  

Cancer, a complex series of diseased conditions, contributes to a significant health problem and is a leading cause of mortalities across the world. Lately, with the advent of improved diagnostics and imaging techniques, and newer advanced oral chemotherapeutics; millions of cancer affected people can lengthen their life span. Despite all the challenges associated with an active chemotherapeutic molecule like microenvironment and the intestinal barrier of the gastrointestinal tract (GIT) etc., the oral delivery remains the most acceptable route of drug administration. In this regard, nanotechnology has played a significant role in the counteracting the challenges encountered with newly developed molecules and aiding in improving their bioavailability and targetability to the tumour site, while administering through the oral route. Several literature instances document the usage of nanostructured drug delivery systems such as lipid-based, polymerbased or metallic nanomaterials to improve the efficacy of chemotherapy. Besides, sitespecific targeted surface-modified drug delivery system designed to deliver the active molecule has opened up to the newer avenues of nanotechnology. However, the issue of potential toxicity allied with nanotechnology cannot be compromised and thus, needs specific ethical regulations and guidelines. The various in vitro models have been developed to evaluate the in vitro toxicity profile which can be further correlated with the invivo model. Thus, this review provides a summarized account of the various aspects related to the role of nanotechnology in cancer therapy and various related issues thereof; that must be triumphed over to apprehend its full promise.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1194
Author(s):  
Aristote B. Buya ◽  
Ana Beloqui ◽  
Patrick B. Memvanga ◽  
Véronique Préat

Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.


2017 ◽  
Vol 23 (3) ◽  
pp. 440-453 ◽  
Author(s):  
Shadab Md. ◽  
Shadabul Haque ◽  
Ravi Sheshala ◽  
Lim Wei Meng ◽  
Venkata Srikanth Meka ◽  
...  

Background: The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects. Methods: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects. Result: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles. Conclusion: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.


2021 ◽  
Vol 27 ◽  
Author(s):  
Margreet Morsink ◽  
Lucia Parente ◽  
Fernanda Silva ◽  
Alexandra Abrantes ◽  
Ana Ramos ◽  
...  

: With the worldwide increasing rate of chronic diseases, such as cancer, the development of novel techniques to improve the efficacy of therapeutic agents is highly demanded. Nanoparticles are especially well suited to encapsulate drugs and other therapeutic agents, bringing additional advantages, such as less frequent dosage requirements, reduced side effects due to specific targeting, and therefore increased patient compliance. However, with the increasing use of nanoparticles and their recent launch on the pharmaceutical market it is important to achieve high quality control of these advanced systems. In this review, we discuss the properties of different nanoparticles, the pharmacokinetics, the biosafety issues of concern, and conclude with novel nanotherapeutics and nanotheragnostics for cancer drug delivery.


2018 ◽  
Vol 25 (31) ◽  
pp. 3703-3718 ◽  
Author(s):  
Ana Claudia Pompeu Raminelli ◽  
Valeria Romero ◽  
Mohammad H. Semreen ◽  
Gislaine Ricci Leonardi

Background: The clinical efficacy of the topical tretinoin is widely studied and has been well established for many therapeutic interventions, among some, photoaging, acne, and melasma. However, the side effects, mainly cutaneous irritation, erythema, xerosis and peeling, remain major obstacle to the patient compliance. Besides, the insight regarding the drug delivery profile is essential to understand the therapeutic action of the drug. Methods: Through bibliographic research in databases we highlight further advances and an update on tretinoin delivery systems such as liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, cyclodextrins, nanostructured polymers and other technological systems that reduce its side effects and improve the permeation profile to potentiate efficacy and drug safety on the skin. Results: Pharmaceutical preparations were developed and evaluated for permeability in in vitro models using pig ear, snake, mouse and human skin, and potential for irritation was also verified using release systems for tretinoin and compared to available commercial formulations. Overall results indicated the composition, charge and size of the system influences the tretinoin delivery, modulating the type of release and its retention. Small unilamellar vesicles promoted greater cutaneous delivery of tretinoin. Negative charge, for both liposomes and niosomes, can improve pig skin hydration as well as the tretinoin retention. The quantity of solid lipids and the type of oil used in the composition of solid lipid nanoparticles and nanostructured lipid carriers affected percutaneous drug delivery. Conclusion: As evident from the literature, the tretinoin technological delivery systems consist an innovative and potential management for increasing the patient compliance presenting safety and efficacy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 678
Author(s):  
Jose Navarro-Partida ◽  
Carlos Rodrigo Castro-Castaneda ◽  
Francisco J. Santa Cruz-Pavlovich ◽  
Luis Abraham Aceves-Franco ◽  
Tomer Ori Guy ◽  
...  

Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.


2021 ◽  
Vol 10 (1) ◽  
pp. 52-58
Author(s):  
Indresh

The anti-hypertensive transdermal patches in the perspective of enhancing the bioavailability as well as in improving patient compliance, it has appear as a substitute for oral route permit self-administration, controlled and sustained drug delivery. This study will investigate the effects of metoprolol Succinate in treatment of hypertension with the interaction of hydroxy propyl methyl cellulose and ethyl cellulose. The present research work concludes that the patches prepared with different ratios of polymers shows sustained drug release for long period of time confirms that the delivery system prepared can be suitably used as sustained and controlled drug delivery. The Transdermal Patches of drug metoprolol Succinate can be utilized in the diseases hypertension, myocardial infarction and congestive heart failure, etc. It offers high patient compliance by ease in administration. Keywords: Anti-hypertensive, Transdermal patches, Metoprolol succinate and HPMC.


2020 ◽  
Vol 10 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Md. Rizwanullah ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Awanish Mishra ◽  
Mohammad Ruhal Ain ◽  
...  

Cancer chemotherapeutic administration by oral route has the potential to create “hospitalization free chemotherapy”. Such a therapeutic approach will improve patient compliance and significantly reduce the cost of treatment. In current clinical practice, chemotherapy is primarily carried out by intravenous injection or infusion and leads to various unwanted effects. Despite the presence of oral delivery challenges like poor aqueous solubility, low permeability, drug stability and substrate for multidrug efflux transporter, cancer chemotherapy delivery through oral administration has gained much attention recently due to having more patient compliance compared to the intravenous mode of administration. In order to address the multifaceted oral drug delivery challenges, a hybrid delivery system is conceptualized to merge the benefits of both polymeric and lipid-based drug carriers. Polymer-lipid hybrid systems have presented various significant benefits as an efficient carrier to facilitate oral drug delivery by surmounting the different associated obstacles. This carrier system has been found suitable to overcome the numerous oral absorption hindrances and facilitate the intravenous-to-oral switch in cancer chemotherapy. In this review, we aimed to discuss the different biopharmaceutic challenges in oral delivery of cancer chemotherapy and how this hybrid system may provide solutions to such challenges.


Sign in / Sign up

Export Citation Format

Share Document