Poly(cyclosiloxane-carborane)s for Harsh Environments

2022 ◽  
Author(s):  
Lihua Zhao ◽  
Tianhao Li ◽  
Bijie Wang ◽  
Ke Chen ◽  
Xiao Hu ◽  
...  

Poly(siloxane-carborane)s are a class of polymeric materials which can be used for harsh environments. Poly(cyclosiloxane-carborane)s were prepared through hydrosilylation of cyclosiloxane and vinyl modified carborane cage. The structure of as-prepared...

2011 ◽  
Vol 2011 (1) ◽  
pp. 000090-000098 ◽  
Author(s):  
Michelle Velderrain ◽  
Matthew Lindberg

Silicones have been used for decades in aerospace and other harsh environments where temperature extremes are common. As the level of sophistication increases for electronic devices to serve these industries where failure is not an option, the material supplier has to also be able to meet these needs. Silicones are polymeric materials composed primarily of repeating silicon and oxygen bonds, known as siloxanes, which can be optimized for various chemical and physical properties by incorporating different organic groups onto the silicon atom. Employing advanced processing techniques to the siloxane system can also greatly reduce mobile siloxane molecules to reduce contamination that can cause electronic failures during assembly or operation. Siloxane based polymeric systems are also unique polymers compared to standard organic based materials in that they have a large free volume that imparts a low modulus which absorbs stresses during thermal cycling as well as not degrading at continuous operating temperatures up to 250 C. They are also slightly polar which allows the incorporation of fillers to impart a variety of unique properties. Filler technology is also a rapidly growing enterprise where fillers with various particle sizes and shapes can be added to silicones to impart key properties such as maintaining electric conductivity at elevated temperatures. This paper will explain fundamentals of silicone chemistry and processing related to getting the optimal performance in harsh environments. A case study comparing two different electrically conductive fillers and how they can influence the electrical conductivity at elevated temperatures will be presented.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1211
Author(s):  
Xingyi Lyu ◽  
Rebekah Gonzalez ◽  
Andalwisye Horton ◽  
Tao Li

Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3946
Author(s):  
Angham G. Hadi ◽  
Sadiq J. Baqir ◽  
Dina S. Ahmed ◽  
Gamal A. El-Hiti ◽  
Hassan Hashim ◽  
...  

Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Gamal A. El-Hiti ◽  
Dina S. Ahmed ◽  
Emad Yousif ◽  
Omar S. A. Al-Khazrajy ◽  
Mustafa Abdallh ◽  
...  

The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperoxide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter the color of polymers. Recently, polyphosphates, Schiff bases, and organometallic complexes were synthesized and used as potential ultraviolet absorbers for polymeric materials. They reduced the damage caused by accelerated and natural ultraviolet aging, which was confirmed by inspecting the surface morphology of irradiated polymeric films. For example, atomic force microscopy revealed that the roughness factor of polymers’ irradiated surfaces was improved significantly in the presence of ultraviolet absorbers. In addition, the investigation of the surface of irradiated polymers using scanning electron microscopy showed a high degree of homogeneity and the appearance of pores that were different in size and shape. The current work surveys for the first time the use of newly synthesized, ultraviolet absorbers as additives to enhance the photostability of polymeric materials and, in particular, polyvinyl chloride and polystyrene, based mainly on our own recent work in the field.


Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


Author(s):  
Martin J. Mahon ◽  
Patrick W. Keating ◽  
John T. McLaughlin

Coatings are applied to appliances, instruments and automobiles for a variety of reasons including corrosion protection and enhancement of market value. Automobile finishes are a highly complex blend of polymeric materials which have a definite impact on the eventual ability of a car to sell. Consumers report that the gloss of the finish is one of the major items they look for in an automobile.With the finish being such an important part of the automobile, there is a zero tolerance for paint defects by auto assembly plant management. Owing to the increased complexity of the paint matrix and its inability to be “forgiving” when foreign materials are introduced into a newly applied finish, the analysis of paint defects has taken on unparalleled importance. Scanning electron microscopy with its attendant x-ray analysis capability is the premier method of examining defects and attempting to identify their root cause.Defects are normally examined by cutting out a coupon sized portion of the autobody and viewing in an SEM at various angles.


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


Polymer News ◽  
2004 ◽  
Vol 29 (7) ◽  
pp. 205-212 ◽  
Author(s):  
Rengarajan Balaji ◽  
Sylvie Boileau ◽  
Philippe Guérin ◽  
Daniel Grande

Sign in / Sign up

Export Citation Format

Share Document