scholarly journals Antithrombogenic properties of Tulbaghia violacea aqueous leaf extracts: assessment of platelet activation and whole blood clotting kinetics

RSC Advances ◽  
2021 ◽  
Vol 11 (48) ◽  
pp. 30455-30464
Author(s):  
Lerato N. Madike ◽  
M. Pillay ◽  
Ketul C. Popat

Tulbaghia violacea plant extracts have been investigated for their potential therapeutic effects in the management of various ailments, among which are cardiovascular diseases, due to the wide range of phytocompounds that the plant possesses.

Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 583 ◽  
Author(s):  
Supun Wedasingha ◽  
Geoffrey Isbister ◽  
Anjana Silva

Venom-induced consumption coagulopathy is the most important systemic effect of snake envenoming. Coagulation tests are helpful to accurately and promptly diagnose venom-induced consumption coagulopathy and administer antivenom, which is the only specific treatment available. However, bedside clotting tests play a major role in diagnosing coagulopathy in low-income settings, where the majority of snakebites occur. We conducted a literature search in MEDLINE® from 1946 to 30 November 2019, looking for research articles describing clinical studies on bedside coagulation tests in snakebite patients. Out of 442 articles identified, 147 articles describing bedside clotting assays were included in the review. Three main bedside clotting tests were identified, namely the Lee–White clotting test, 20-min whole blood clotting time and venous clotting time. Although the original Lee–White clotting test has never been validated for snake envenoming, a recently validated version has been used in some South American countries. The 20-min whole blood clotting time test is the most commonly used test in a wide range of settings and for taxonomically diverse snake species. Venous clotting time is almost exclusively used in Thailand. Many validation studies have methodological limitations, including small sample size, lack of case-authentication, the inclusion of a heterogeneous mix of snakebites and inappropriate uses of gold standard tests. The observation times for bedside clotting tests were arbitrary, without proper scientific justification. Future research needs to focus on improving the existing 20-min whole blood clotting test, and also on looking for alternative bedside coagulation tests which are cheap, reliable and quicker.


2012 ◽  
Vol 7 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Joanna Saluk ◽  
Michał Bijak ◽  
Joanna Kołodziejczyk-Czepas ◽  
Małgorzata Posmyk ◽  
Krystyna Janas ◽  
...  

AbstractRed cabbage belongs to cruciferous vegetables recognized as a rich source of anthocyanins. Anthocyanins have a wide range of therapeutic advantages without adverse effects, including cardiovascular protective properties. For development of cardiovascular diseases, platelet activation is crucial; therefore compounds which inhibit platelet activation are sought after. The anti-platelet activity of anthocyanins has only been described and is still unclear. In our study, the extract of anthocyanins, obtained from fresh leaves of red cabbage, was used in vitro to examine their antioxidative effects on platelets under oxidative stress conditions which are responsible for hyperactivity of these cells. The antiplatelet and antioxidative activities were determined by platelet aggregation and specific markers of the arachidonate cascade with O2−· generation, and oxidative changes (carbonyl groups and 3-nitrotyrosine). Extracts (5–15 μM) protected platelet proteins and lipids against oxidative damage, and diminished platelet activation. Anthocyanins from red cabbage provided beneficial anti-platelet effects and might help prevent cardiovascular diseases.


RSC Advances ◽  
2013 ◽  
Vol 3 (46) ◽  
pp. 24406 ◽  
Author(s):  
Vinod B. Damodaran ◽  
Victoria Leszczak ◽  
Kathryn A. Wold ◽  
Sarah M. Lantvit ◽  
Ketul C. Popat ◽  
...  

Author(s):  
Brian Alzua ◽  
Mark Smith ◽  
Yan Chen

Abstract Hemocompatibility testing is critical for assessing the safety of blood-contacting medical devices. Comprehensive hemocompatibility testing requires examining a wide range of possible adverse effects cause by direct or indirect blood contact, such as hemolysis, complement activation, and thrombus formation [1]. Moreover, these domains each encompass complex intercellular processes with many potential targets for analysis. For example, the current testing paradigm of platelet function may involve exposing the device to human whole blood and performing simple blood counts and/or macroscopic evaluation to determine the extent of platelet activation and clot formation as described in ASTM F2888-19. However, this approach does not capture any observations for device-mediated initiation of any steps in the platelet activation pathway prior to aggregation. We have validated a method to evaluate platelet activation by quantifying surface p-selectin expression after exposure to various materials. This method will provide an additional level of detail about potential platelet activating properties of a medical device. Flow cytometry has been used previously to measure platelet activation for clinical and research purposes. We sought to adapt this method to test for platelet activation induced by exposure of blood to medical devices or materials. We determined that processing fresh whole blood to platelet-rich plasma (PRP) by gentle centrifugation enhanced the signal compared to fresh blood itself. In each experiment, devices were exposed to PRP according to an extraction ratio of 6 cm2/mL for 1 hour. A blank control consisting of untreated PRP, and a positive control consisting of ADP, a potent agonist, were also used. After the exposure, excess plasma was removed from the articles and combined with anti-CD61 (to stain for platelets) and anti-CD62P (to stain for activated platelets) antibodies. Flow cytometry was then performed to quantify the percentage of CD62P+ over the total CD61+ cells to measure the percentage of activated platelets. In order to optimize the method, we investigated the effect of several experimental factors, including anticoagulant usage, donor variability, and selection of reference materials to serve as controls. Our results indicate that the flow cytometry-based method is consistent and reproducible, quick and easy to perform, and is well-correlated with results from the standard platelet and leukocyte count assay. The flow cytometry-based platelet activation method is a powerful supplement to the standard regimen of medical device hemocompatibility testing.


2019 ◽  
Vol 119 (10) ◽  
pp. 1554-1562 ◽  
Author(s):  
Koichi Kaikita ◽  
Kazuya Hosokawa ◽  
Jeffrey R. Dahlen ◽  
Kenichi Tsujita

AbstractVarious antithrombotic agents are clinically used to inhibit the cascade of arterial or venous thrombosis in cardiovascular diseases. Dual antiplatelet therapy with aspirin and P2Y12 inhibitors is prescribed in patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). Direct oral anticoagulants (DOACs) are widely used for the prevention or treatment of thromboembolism in patients with atrial fibrillation (AF) and venous thromboembolism. However, there has been no definitive tool to simultaneously monitor the antithrombotic effects of these drugs. The Total Thrombus-Formation Analysis System (T-TAS), a microchip-based flow chamber system that mimics in vivo conditions for evaluating whole blood thrombogenicity, was developed for the quantitative analysis of thrombus formation in whole blood specimens. The utility of T-TAS has been evaluated in CAD patients treated with antiplatelet therapies. The T-TAS PL chip area under the flow pressure curve (AUC) accurately assesses primary hemostasis and is sensitive to the therapeutic effects of various antiplatelet therapies. In addition, low AUC results are a significant predictor of periprocedural bleeding events in CAD patients undergoing PCI. The T-TAS AR chip AUC result is useful for assessing the efficacy of DOACs and warfarin in AF patients undergoing catheter ablation, and it is also a potential independent predictor of periprocedural bleeding events and avoidance of thrombosis in patients having undergone total knee arthroplasty. In conclusion, T-TAS is a useful index for evaluating the total antithrombotic effects of combination antithrombotic agents in patients with various cardiovascular diseases.


1999 ◽  
Vol 19 (03) ◽  
pp. 134-138
Author(s):  
Gitta Kühnel ◽  
A. C. Matzdorff

SummaryWe studied the effect of GPIIb/IIIa-inhibitors on platelet activation with flow cytometry in vitro. Citrated whole blood was incubated with increasing concentrations of three different GPIIb/IIIa-inhibitors (c7E3, DMP728, XJ757), then thrombin or ADP were added and after 1 min the sample was fixed. Samples without c7E3 but with 0.1 U/ml thrombin had a decrease in platelet count. Samples with increasing concentrations of c7E3 had a lesser or no decrease in platelet count. The two other inhibitors (DMP 725, XJ757) gave similar results. GPIIb/IIIa-inhibitors prevent aggregate formation and more single platelets remain in the blood sample. The agonist-induced decrease in platelet count correlates closely with the concentration of the GPIIb/IIIa inhibitor and receptor occupancy. This correlation may be used as a simple measure for inhibitor activity in whole blood.


2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2020 ◽  
Vol 16 (4) ◽  
pp. 419-431
Author(s):  
Kishore K. Valluri ◽  
Tejeswara R. Allaka ◽  
IV Kasi Viswanath ◽  
Nagaraju PVVS

Background: Many pyrazole piperazine derivatives are known to exhibit a wide range, thus being attractive for the drug design and synthesis of interesting class of widely studied heterocyclic compounds. It is therefore necessary to devote continuing effort for the identification and development of New Chemical Entities (NCEs) as potential antibacterial and anticancer agents to address serious health problems. Methods: A series of new compounds containing pyrazole ring linked to a piperazine hydrochloride moiety were synthesized and screened for their antibacterial activity, cytotoxicity of novel scaffolds are described by variation in therapeutic effects of parent molecule. The structure variants were characterized by using a blend of spectroscopic 1H NMR, 13C NMR, IR, Mass and chromatographic techniques. Results: When tested for in vitro antibacterial and anticancer activities, several of these compounds showed good activities. The target compounds 9b, 9a and 9e exhibited a high degree of anticancer activity against human colon cancer cell line Caco-2 and human breast cancer cell line MDAMB231. Further, 9a, 9b, 9d, and 9h showed better activity towards four medically relevant organisms; Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Klebsiella Species compared to CPF. In the present investigation, cheminfomatics tools Molinspiration, 2003 and MolSoft, 2007 for the prediction of insilico molecular properties and drug likeness for the target compounds 9a-h was evaluated and positive results were observed. Conclusion: Our study revealed that the molecular framework presented here could be a useful template for the identification of novel small molecules as promising antibacterial/ anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document