CH4 Activation and C-C coupling on Ti2C(100) Surface in presence of intrinsic C-vacancies: Is excess good?

Author(s):  
Nishamol Kuriakose ◽  
Unmesh Mondal ◽  
Prasenjit Ghosh

Activation of methane, the main component in natural gas, and its conversion to useful products is an important chemical process because methane is not only one of the most important...

2021 ◽  
Vol 21 (4) ◽  
pp. 227-237
Author(s):  
V. S. Arutyunov ◽  
V. I. Savchenko ◽  
I. V. Sedov ◽  
A. V. Nikitin

The paper considers the growing importance of gas chemistry for the world economy and the related necessity of developing new, particularly noncatalytic technologies for the conversion of natural gas and other hydrocarbon gases into chemical products. The available and promising noncatalytic processes of their conversion into syngas as well as the direct methods for the synthesis of chemical products from methane, which is the main component of natural gas, are discussed.


Author(s):  
Amir Sharafian ◽  
Paul Blomerus ◽  
Walter Mérida

Abstract Recent research into methane emissions from the liquefied natural gas (LNG) supply chain has revealed uncertainty in the overall greenhouse gas emissions reduction associated with the use of LNG in heavy-duty vehicles. Methane is the main component of natural gas and a potent greenhouse gas. This study investigates the impact of five methods used to offload LNG from a tanker truck to an LNG refueling station and estimate the amount of fugitive methane emissions. The LNG offloading process time, and the final pressures of the tanker truck and refueling station are considered to evaluate the performance of the LNG offloading methods. The modeling results show that the LNG transfer by using a pressure buildup unit has a limited operating range and can increase methane emissions by 10.4% of LNG offloaded from the tanker truck. The results indicate that the LNG transfer by using a pump and an auxiliary pressure buildup unit without vapor return provides the shortest fuel offloading time with the lowest risk of venting methane to the atmosphere.


REAKTOR ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
D. D. Anggoro

Methane is the main component of natural gas and this research provides the platrorm on the potential of utilizing natural gas, found abundant in Indonesia, to form gasoline. The objectives of the research are to modify HZSM-5 zeolite with a series of transition metals (Cr, Mn, Co, Ni, Cu, and Pt) and Ga , and to evaluate the performances  of these catalyst  for the single step conversion of methane to gasoline. The oxidation of methane were carried out in a micro-packed bed reactor at atmoepheric pressure, temperature 800 0C, F/W = 10440 ml/g.hr and 9%vol O2. Metals were loaded into the HZSM-5 zeolite by the wetness incipient impregnation method. The characterization results indicated that the ionic metals (Mn+) occupy the H+ position of HZSM-5 and metal loaded HZSM-5. Ni- HZSM-5, Cu- HZSM-5 and Ga- HZSM-5 gave a high methane conversion and high gasoline selectivity. Among the catalyst samles tested, Cr- HZSM-5 showed the highest  Research Octane Number (RON=86). These  catalyst have the potential  to convert natural gas to C5+ liquid hydrocarbons provided the oxidation, dehydration and oligomerization function of the metals are in balance.Keywords : direct conversion, methane, liquid hydrocarbons, metal, HZSM-5


2015 ◽  
Vol 68 (11) ◽  
pp. 1700 ◽  
Author(s):  
Takemi Mizuno ◽  
Manabu Abe ◽  
Noriaki Ikeda

Intersystem crossing is an important chemical process. In this study, the rate constant of intersystem crossing, kISC ~3 × 107 s–1, for cyclopentane-1,3-diyl diradicals was unequivocally determined by the simultaneous observation of the decay process of the triplet diradical (λobs = 320 nm) and the growth process of the corresponding singlet diradical (λobs = 560 nm). The two spin states were directly observed using a long-lived singlet 2,2-dimethoxy-1,3-diphenylcyclopentane-1,3-diyl diradical.


Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Maciej Mikulski ◽  
Sławomir Wierzbicki

Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John C. Lin ◽  
Ryan Bares ◽  
Benjamin Fasoli ◽  
Maria Garcia ◽  
Erik Crosman ◽  
...  

AbstractMethane, a potent greenhouse gas, is the main component of natural gas. Previous research has identified considerable methane emissions associated with oil and gas production, but estimates of emission trends have been inconsistent, in part due to limited in-situ methane observations spanning multiple years in oil/gas production regions. Here we present a unique analysis of one of the longest-running datasets of in-situ methane observations from an oil/gas production region in Utah’s Uinta Basin. The observations indicate Uinta methane emissions approximately halved between 2015 and 2020, along with declining gas production. As a percentage of gas production, however, emissions remained steady over the same years, at ~ 6–8%, among the highest in the U.S. Addressing methane leaks and recovering more of the economically valuable natural gas is critical, as the U.S. seeks to address climate change through aggressive greenhouse emission reductions.


2020 ◽  
Vol 63 (1) ◽  
pp. 84-86
Author(s):  
V. I. Berdnikov ◽  
Yu. A. Gudim

The main component of natural gas is methane CH4 , that is, a component consisting of two active reducing agents for iron – carbon and hydrogen. Previously, computer simulations have found that the reduction of iron from magnetite with carbon begins at 680 °C, and its reduction with hydrogen – at 350 °C. In this paper it is shown that the beginning of the reduction of iron with methane should be expected at a temperature of 530 °C. However, this temperature for natural gas, obtained from gas condensate fields and containing up to 10 % of heavy hydrocarbons and impurities, increases to 550 °C. When using natural gas together with oxygen in the ratio CH4 : O2 = 2:1, temperature of the beginning of reduction also increases to 620 °C. In addition, a calculation formula was proposed for Fe – O – C – H system, which allows predicting the formation of a “pure” phase of iron at 1500 °C based on the chemical composition of the reducing gas mixture.


2021 ◽  
Vol 21 (4) ◽  
pp. 197-217
Author(s):  
A. A. Stepanov ◽  
L. L. Korobitsyna ◽  
A. V. Vosmerikov

The review examines the current state of the catalytic conversion of natural gas into valuable chemical products and fuel. The main component of natural gas is methane. Methane conversion processes are of great importance for society because natural gas, along with oil, supplies us with energy, fuel and chemical products. Direct and indirect methods of methane conversion are considered. Direct conversion of methane is often viewed as the holy grail of modern research, since methane molecules are very stable. The review considers the methods of obtaining such compounds as synthesis gas, methanol, ethylene, formaldehyde, benzene, etc. The greatest emphasis is placed on the direct processes of methane conversion, namely on the dehydroaromatization of methane. The catalysts and the conditions for their preparation are considered, the state of active centers is studied, and the mechanism of methane dehydroaromatization is proposed. The reasons for deactivation of the catalysts and methods of their regeneration are also described. This review will help to summarize the latest known achievements in the field of heterogeneous catalysis for natural gas processing.


2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Carmen Hogendoorn ◽  
Arjan Pol ◽  
Guylaine H. L. Nuijten ◽  
Huub J. M. Op den Camp

ABSTRACT Industrial methanol production converts methane from natural gas into methanol through a multistep chemical process. Biological methane-to-methanol conversion under moderate conditions and using biogas would be more environmentally friendly. Methanotrophs, bacteria that use methane as an energy source, convert methane into methanol in a single step catalyzed by the enzyme methane monooxygenase, but inhibition of methanol dehydrogenase, which catalyzes the subsequent conversion of methanol into formaldehyde, is a major challenge. In this study, we used the thermoacidophilic methanotroph “Methylacidiphilum fumariolicum” SolV for biological methanol production. This bacterium possesses a XoxF-type methanol dehydrogenase that is dependent on rare earth elements for activity. By using a cultivation medium nearly devoid of lanthanides, we reduced methanol dehydrogenase activity and obtained a continuous methanol-producing microbial culture. The methanol production rate and conversion efficiency were growth-rate dependent. A maximal conversion efficiency of 63% mol methanol produced per mol methane consumed was obtained at a relatively high growth rate, with a methanol production rate of 0.88 mmol/g (dry weight)/h. This study demonstrates that methanotrophs can be used for continuous methanol production. Full-scale application will require additional increases in the titer, production rate, and efficiency, which can be achieved by further decreasing the lanthanide concentration through the use of increased biomass concentrations and novel reactor designs to supply sufficient gases, including methane, oxygen, and hydrogen. IMPORTANCE The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph “Methylacidiphilum fumariolicum” SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas.


2009 ◽  
Vol 18 (3) ◽  
pp. 476-484
Author(s):  
Rafael Silva Dias ◽  
Leandro Cardoso Silva ◽  
Adilson Jose de Assis

Sign in / Sign up

Export Citation Format

Share Document