scholarly journals Methanol Production by “Methylacidiphilum fumariolicum” SolV under Different Growth Conditions

2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Carmen Hogendoorn ◽  
Arjan Pol ◽  
Guylaine H. L. Nuijten ◽  
Huub J. M. Op den Camp

ABSTRACT Industrial methanol production converts methane from natural gas into methanol through a multistep chemical process. Biological methane-to-methanol conversion under moderate conditions and using biogas would be more environmentally friendly. Methanotrophs, bacteria that use methane as an energy source, convert methane into methanol in a single step catalyzed by the enzyme methane monooxygenase, but inhibition of methanol dehydrogenase, which catalyzes the subsequent conversion of methanol into formaldehyde, is a major challenge. In this study, we used the thermoacidophilic methanotroph “Methylacidiphilum fumariolicum” SolV for biological methanol production. This bacterium possesses a XoxF-type methanol dehydrogenase that is dependent on rare earth elements for activity. By using a cultivation medium nearly devoid of lanthanides, we reduced methanol dehydrogenase activity and obtained a continuous methanol-producing microbial culture. The methanol production rate and conversion efficiency were growth-rate dependent. A maximal conversion efficiency of 63% mol methanol produced per mol methane consumed was obtained at a relatively high growth rate, with a methanol production rate of 0.88 mmol/g (dry weight)/h. This study demonstrates that methanotrophs can be used for continuous methanol production. Full-scale application will require additional increases in the titer, production rate, and efficiency, which can be achieved by further decreasing the lanthanide concentration through the use of increased biomass concentrations and novel reactor designs to supply sufficient gases, including methane, oxygen, and hydrogen. IMPORTANCE The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph “Methylacidiphilum fumariolicum” SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas.

2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2020 ◽  
Vol 45 (59) ◽  
pp. 34483-34493
Author(s):  
Hua Liu ◽  
Jinghui Qu ◽  
Ming Pan ◽  
Bingjian Zhang ◽  
Qinglin Chen ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 115-118 ◽  
Author(s):  
Henrik Pedersen ◽  
Stefano Leone ◽  
Anne Henry ◽  
Franziska Christine Beyer ◽  
Vanya Darakchieva ◽  
...  

The chlorinated precursor methyltrichlorosilane (MTS), CH3SiCl3, has been used to grow epitaxial layers of 4H-SiC in a hot wall CVD reactor, with growth rates as high as 170 µm/h at 1600°C. Since MTS contains both silicon and carbon, with the C/Si ratio 1, MTS was used both as single precursor and mixed with silane or ethylene to study the effect of the C/Si and Cl/Si ratios on growth rate and doping of the epitaxial layers. When using only MTS as precursor, the growth rate showed a linear dependence on the MTS molar fraction in the reactor up to about 100 µm/h. The growth rate dropped for C/Si < 1 but was constant for C/Si > 1. Further, the growth rate decreased with lower Cl/Si ratio.


Author(s):  
Nishamol Kuriakose ◽  
Unmesh Mondal ◽  
Prasenjit Ghosh

Activation of methane, the main component in natural gas, and its conversion to useful products is an important chemical process because methane is not only one of the most important...


Sign in / Sign up

Export Citation Format

Share Document