Electrodeposited Ni-Fe-P-FeMnO3/Fe multi-stage nanostructured electrocatalyst with superior catalytic performance for water splitting

Author(s):  
Xiao Tan ◽  
Xin Liu ◽  
Yingying Si ◽  
Zunhang Lv ◽  
Zihan Li ◽  
...  

It is very important to design and prepare low-cost and efficiency electrocatalysts for water splitting in alkaline solution. In this works, Ni-Fe-P and Ni-Fe-P-FeMnO3 electrocatalysts are developed using facile electrodeposition...

2021 ◽  
Author(s):  
Yang Li ◽  
Shumei Chen ◽  
Xin Wu ◽  
Huabin Zhang ◽  
Jian Zhang

Sustainable hydrogen fuel supply through electrochemical water splitting requires high-efficient, low-cost and robust electrocatalysts. Interface engineering is of key importance to improve the catalytic performance in the heterogeneous electrocatalysis system....


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


2021 ◽  
Author(s):  
Harsha Bantawal ◽  
Sandhya U. Shenoy ◽  
Denthaje Krishna Bhat

CaTiO3 has attracted enormous interest in the field of photocatalytic dye degradation and water splitting owing to its low cost, excellent physicochemical stability and structural tunability. Herein, we have developed...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 753
Author(s):  
Maria Lykaki ◽  
Sofia Stefa ◽  
Sónia A. C. Carabineiro ◽  
Miguel A. Soria ◽  
Luís M. Madeira ◽  
...  

The copper–ceria (CuOx/CeO2) system has been extensively investigated in several catalytic processes, given its distinctive properties and considerable low cost compared to noble metal-based catalysts. The fine-tuning of key parameters, e.g., the particle size and shape of individual counterparts, can significantly affect the physicochemical properties and subsequently the catalytic performance of the binary oxide. To this end, the present work focuses on the morphology effects of ceria nanoparticles, i.e., nanopolyhedra (P), nanocubes (C), and nanorods (R), on the water–gas shift (WGS) performance of CuOx/CeO2 catalysts. Various characterization techniques were employed to unveil the effect of shape on the structural, redox and surface properties. According to the acquired results, the support morphology affects to a different extent the reducibility and mobility of oxygen species, following the trend: R > P > C. This consequently influences copper–ceria interactions and the stabilization of partially reduced copper species (Cu+) through the Cu2+/Cu+ and Ce4+/Ce3+ redox cycles. Regarding the WGS performance, bare ceria supports exhibit no activity, while the addition of copper to the different ceria nanostructures alters significantly this behaviour. The CuOx/CeO2 sample of rod-like morphology demonstrates the best catalytic activity and stability, approaching the thermodynamic equilibrium conversion at 350 °C. The greater abundance in loosely bound oxygen species, oxygen vacancies and highly dispersed Cu+ species can be mainly accounted for its superior catalytic performance.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12470-12475
Author(s):  
Xinmei Liu ◽  
Chen Liang ◽  
Wenlong Yang ◽  
Chunyang Yang ◽  
Jiaqi Lin ◽  
...  

An effective approach to achieve the low cost and high stability of electro-catalysts for HER.


RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56375-56381 ◽  
Author(s):  
Xinxin Jin ◽  
Yu Jiang ◽  
Qi Hu ◽  
Shaohua Zhang ◽  
Qike Jiang ◽  
...  

Low-cost dual transition metal (Fe and Co) based non-noble metal electrocatalysts (NNMEs) with large surface area and porous structure boost oxygen reduction reaction (ORR) performance in alkaline solution.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2572
Author(s):  
Yanfei Fan ◽  
Yan Liu ◽  
Hongyu Cui ◽  
Wen Wang ◽  
Qiaoyan Shang ◽  
...  

Strontium Titanate has a typical perovskite structure with advantages of low cost and photochemical stability. However, the wide bandgap and rapid recombination of electrons and holes limited its application in photocatalysis. In this work, a SrTiO3 material with surface oxygen vacancies was synthesized via carbon reduction under a high temperature. It was successfully applied for photocatalytic overall water splitting to produce clean hydrogen energy under visible light irradiation without any sacrificial reagent for the first time. The photocatalytic overall water splitting ability of the as-prepared SrTiO3-C950 is attributed to the surface oxygen vacancies that can make suitable energy levels for visible light response, improving the separation and transfer efficiency of photogenerated carriers.


Author(s):  
Qiucheng Xu ◽  
Jiahao Zhang ◽  
Haoxuan Zhang ◽  
Liyue Zhang ◽  
Ling Chen ◽  
...  

Alkaline water splitting, especially the anion-exchange-membrane based water electrolysis, is an attractive way for low-cost and scalable H2 production. Green electricity-driven alkaline water electrolysis is requested to develop highly-efficient electrocatalysts...


Sign in / Sign up

Export Citation Format

Share Document