A hyperbranched polymer elastomer-based pressure sensitive adhesive

Author(s):  
Chunyan Cui ◽  
Bo Liu ◽  
Tengling Wu ◽  
Yang Liu ◽  
Chuanchuan Fan ◽  
...  

Creation of pressure sensitive adhesives (PSAs) with instantly tough adhesion to diverse materials in harsh conditions remains a huge challenge. Here, we report a versatile strategy for designing a hyperbranched...

TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 631-639
Author(s):  
MOHAMMAD HADI ARYAIE MONFARED ◽  
HOSSEIN RESALATI ◽  
ALI GHASEMIAN ◽  
MARTIN A. HUBBE

This study investigated the addition of acrylic fiber to old corrugated container (OCC) pulp as a possible means of overcoming adverse effects of water-based pressure sensitive adhesives during manufacture of paper or paperboard. Such adhesives can constitute a main source of stickies, which hurt the efficiency of the papermaking process and make tacky spots in the product. The highest amount of acrylic fiber added to recycled pulps generally resulted in a 77% reduction in accepted pulp microstickies. The addition of acrylic fibers also increased pulp freeness, tear index, burst strength, and breaking length, though there was a reduction in screen yield. Hence, in addition to controlling the adverse effects of stickies, the addition of acrylic fibers resulted in the improvement of the mechanical properties of paper compared with a control sample.


2007 ◽  
Vol 9 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Roland Milker ◽  
Zbigniew Czech ◽  
Marta Wesołowska

Synthesis of photoreactive solvent-free acrylic pressure-sensitive adhesives in the recovered system The present paper discloses a novel photoreactive solvent-free acrylic pressure-sensitive adhesive (PSA) systems, especially suitable for the so much adhesive film applications as the double-sided, single-sided or carrier-free technical tapes, self-adhesive labels, protective films, marking and sign films and wide range of medical products. The novel photoreactive solvent-free pressure-sensitive adhesives contain no volatile organic compounds (residue monomers or organic solvent) and comply with the environment and legislation. The synthesis of this new type of acrylic PSA is conducted in common practice by solvent polymerisation. After the organic solvent are removed, there remains a non-volatile, solvent-free highly viscous material, which can be processed on a hot-melt coating machine at the temperatures of about 100 to 140°C.


2014 ◽  
Vol 644-650 ◽  
pp. 4936-4940
Author(s):  
Yan Yan Cui ◽  
Guang Xue Chen

If the pressure sensitive adhesive is coated on the back, it can be used for bonding electronic tag, overburden, protective layer, and RFID layer. The acrylate pressure sensitive adhesives are simple and less pollution, so more and more companies pay attention on this kind of binder. Since the thickness of adhesive layer is relatively small, ink-jet printing is now widely used to easily obtain thin layer and design the pressure sensitive adhesive shape of different parts. So how to get superior performance pressure sensitive adhesive which is suitable for ink-jet printing become an urgent problem in printed electronics. The experiment was conducted through solution copolymerization of various vinyl monomers which were selected on the principle of solvent parameter prepared by free radical polymerization. The monomer, initiator mixture solution was dropped in continuous and synchronization process. By regulating the amount of initiator and polymerization temperature, we could effectively reduce the system viscosity and prepare high quality high-solids acrylate UV-curable pressure sensitive adhesives with low viscosity for ink-jet printing. The influence of initiator, solvents, transfer reagents and temperature on the structure and properties of the resin were discussed.


2000 ◽  
Vol 629 ◽  
Author(s):  
Kenneth R. Shull ◽  
Alfred J. Crosby ◽  
Cynthia M. Flanigan

ABSTRACTTriblock copolymers with poly (methyl methacrylate) (PMMA) end blocks and a poly (n-butyl acrylate) (PnBA) midblock have been synthesized as model pressure sensitive adhesives and thermoreversible gels. These materials dissolve in a variety of alcohols at temperatures above 60 °C to form freely flowing liquids. At lower temperatures the PMMA end-blocks associate so that the solutions form ideally elastic solids. In our case the solvent is 2-ethylhexanol, polymer volume fractions vary from 0.05 to 0.3, and the elastic moduli are close to 10,000 Pa. We have conducted three types of experiments to elucidate the origins of adhesion and bulk mechanical properties of these materials: 1) Weakly adhering gels: The adhesive properties of the gels are dominated by the solvent. Very little adhesion hysteresis is observed in this case, although we do observe hysteresis associated with the frictional response of the layers. 2) Strongly adhering gels. By heating the gels in contact with a PMMA surface, it is possible to bond the gels to the surface. Development of adhesion as the PMMA blocks penetrate into the PMMA substrate can be probed in this case. The cohesive strengths of the gels are found to be substantially greater than their elastic moduli, so that these materials can be reversibly extended to very high strains. These properties have enabled us to probe the origins of elastic shape instabilities that play a very important role in the behavior of thin adhesive layers. 3) Dried gels – model pressure sensitive adhesives. By removing the solvent at low temperatures, the underlying structure of the gel is preserved, giving a thin elastic layer with excellent performance as a pressure sensitive adhesive. Resistance to adhesive failure, expressed as a velocity-dependent fracture energy, greatly exceeds the thermodynamic work of adhesion. This energy is further magnified by ‘bulk’ energy dissipation when the stress applied to the adhesive layer exceeds its yield stress.


2020 ◽  
Vol 862 ◽  
pp. 120-124
Author(s):  
Worapat Prachasilchai ◽  
Sittiporn Punyanitya ◽  
Rungsarit Koonawoot ◽  
Anucha Ruksanti ◽  
Phanlob Chankachang ◽  
...  

Successfully pressure-sensitive adhesives have been used by many industrial tape and label applications.This tape widely used in daily life of adhesive bandage. In this work, the novel the adhesive is fabricated from glutinous rice flour, gelatin, polyvinyl alcohol, borax, methyl paraben and glycerol. Characteristics of adhesive were then investigated by scanning electron microscopy (SEM), and swelling ratios. Mechanical characterization and tissue adhesive bonding test of the final product were also performed.


2009 ◽  
Vol 11 (3) ◽  
pp. 1-4
Author(s):  
Zbigniew Czech ◽  
Agnieszka Butwin

Butyl acrylate/4-acryloyloxy benzophenone copolymers as photoreactive UV-crosslinkable pressure-sensitive adhesives It has previously been shown that copolymers of butyl acrylate with 4-acryloyloxy benzophenone can be used as pressure-sensitive adhesives (PSAs). This paper presents the synthesis and application of a solvent-borne polymer system for the preparation of photoreactive UV-crosslinkable acrylic pressure-sensitive adhesives. Butyl acrylate/benzophenone copolymers with molecular mass in the range 180 000 to 480 000 Dalton were prepared by carrying out free-radical solution polymerization. These copolymers were found to be tacky but in some cases to possess insufficient cohesive strength after UV-crosslinking to be useful as PSAs. The other copolymers resulted in materials with the balance of cohesive and adhesive characteristics required of good PSAs. Some of the parameters affecting the pressure-sensitive adhesive properties of the copolymers are the concentration of 4-acryloyloxy benzophenone, the molecular mass of the polymeric components, the UV-reactivity, and properties such as tack, peel adhesion, and cohesion.


RSC Advances ◽  
2021 ◽  
Vol 11 (59) ◽  
pp. 37392-37402
Author(s):  
Tae-Hyung Lee ◽  
Gi-Yeon Han ◽  
Mo-Beom Yi ◽  
Jae-Ho Shin ◽  
Hyun-Joong Kim

A photoresponsive switchable pressure-sensitive adhesive (PSA) was fabricated with an azobenzene-containing polymer and low molecular weight compounds. Its adhesion force was activated/deactivated rapidly by UV/visible light irradiation.


2016 ◽  
Vol 18 (4) ◽  
pp. 124-128 ◽  
Author(s):  
Zbigniew Czech ◽  
Zbigniew Maciejewski ◽  
Krystyna Kondratowicz-Maciejewska

Abstract The application of water-borne pressure-sensitive adhesives (PSA) based on acrylics is increasing in a variety of industrial areas. The have been used for manufacturing of double sided and carrier free mounting tapes, splicing tapes, marking and sign films, self-adhesive labels, packaging tapes, protective films and diverse high quality medical materials. Nano-sized inorganic fillers can modify diverse adhesive and self-adhesive coating properties such as tack, peel adhesion, shear strength at 20°C and 70°C, and removability Amorphous synthetic silica nanoparticles in form of water dispersions: Ludox PX-30 (30 wt.% silica stabilizing with counter ion sodium), Ludox PT-40 (40 wt.% silica stabilizing with counter ion sodium), Ludox PT-40AS (40 wt.% silica stabilizing with counter ion ammonium), and Ludox PW-50 (50 wt.% silica stabilizing with counter ion sodium) (from Grace) in concentrations between 1 and 5wt.% were used for modifying of water-born pressure-sensitive adhesive acrylics: Acronal 052, Acronal CR 516 (both BASF) and Plextol D273 (Synthomer) properties. It has been found in this study that the nano-technologically reinforced system containing of Acronal 052 and amorphous silica Ludox PX-30 showed a great enhancement in tack, peel adhesion and shear strength. In this paper we evaluate the performance of Acronal 052 modified with amorphous silica Ludox PX-30.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5151
Author(s):  
Zbigniew Czech ◽  
Janina Kabatc ◽  
Marcin Bartkowiak ◽  
Adam Licbarski ◽  
Karolina Mozelewska ◽  
...  

A new class of additionable ultraviolet photoinitiators that can be used, through addition, for modification of the acrylic polymer chain and their influence of main properties of acrylic pressure-sensitive adhesives (PSAs) is described here. The photoinitiators studied are based on benzophenone, dibenzofuran and anthraquinone chromophores. The propyleneimine carbonyl is the reactive additionable group incorporated in the photoinitiator structure. First, the solvent-borne acrylic pressure-sensitive adhesive was synthesized and characterized. Then, a photoinitiator suitable for addition to the acrylic polymer chain possessing a carboxyl group was added before UV-irradiation. A mechanism of UV-initiated cross-linking reaction of acrylic PSA with additionable photoinitiators was done as well. The influence of the concentration and type of photoinitiator, UV-crosslinking time and UV-dose on peel adhesion, shear strength and tack of solvent-borne acrylic pressure-sensitive adhesives cross-linked by UV light was studied and presented here. It was found that the tack depends on the UV-dose and photoinitiator concentration. An increase of UV dose results in an increase of shear strength of acrylic pressure-sensitive adhesive (PSA) formulations.


2011 ◽  
Vol 197-198 ◽  
pp. 1217-1220
Author(s):  
Ponwanit Jarenputtakrun ◽  
Praneet Opanasopit ◽  
Suwannee Panomsuk ◽  
Tanasait Ngawhirunpat

The aim of this study was to prepare and investigate the isosorbide dinitrate transdermal patches (IDPs) in the concentration of 40 mg/cm2. Acrylic pressure sensitive adhesives (PSA) were used to formulate IDPs. IDPs were prepared by casting method. The effect of content of PSA, and concentration of enhancer, propylene glycol, in the formulations were evaluated. IDPs were investigated for their thickness, weight/area ratio, adhesiveness and in vitro skin permeation. The higher the content of PSA in the formulation, the higher the thickness and the W/A ratio. Propylene glycol added in the formulation (2.5, 5, 10%) significantly enhanced the skin permeation of ISDN. The higher the content of PG, the higher the flux of ISDN through the skin. Our research suggests that isosorbide dinitrate loaded with 10% of propylene glycol in acrylic matrix pressure sensitive adhesive can be potentially used as a transdermal drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document