MPC1 is essential for PGC-1α-induced mitochondrial respiration and biogenesis

2018 ◽  
Vol 475 (10) ◽  
pp. 1687-1699 ◽  
Author(s):  
Eunjin Koh ◽  
Young Kyung Kim ◽  
Daye Shin ◽  
Kyung-Sup Kim

Mitochondrial pyruvate carrier (MPC), which is essential for mitochondrial pyruvate usage, mediates the transport of cytosolic pyruvate into mitochondria. Low MPC expression is associated with various cancers, and functionally associated with glycolytic metabolism and stemness. However, the mechanism by which MPC expression is regulated is largely unknown. In this study, we showed that MPC1 is down-regulated in human renal cell carcinoma (RCC) due to strong suppression of peroxisome proliferator-activated receptor-gamma co-activator (PGC)-1 alpha (PGC-1α). We also demonstrated that overexpression of PGC-1α stimulates MPC1 transcription, while depletion of PGC-1α by siRNA suppresses MPC expression. We found that PGC-1α interacts with estrogen-related receptor-alpha (ERR-α) and recruits it to the ERR-α response element motif located in the proximal MPC1 promoter, resulting in efficient activation of MPC1 expression. Furthermore, the MPC inhibitor, UK5099, blocked PGC-1α-induced pyruvate-dependent mitochondrial oxygen consumption. Taken together, our results suggest that MPC1 is a novel target gene of PGC-1α. In addition, low expression of PGC-1α in human RCC might contribute to the reduced expression of MPC, resulting in impaired mitochondrial respiratory capacity in RCC by limiting the transport of pyruvate into the mitochondrial matrix.

2000 ◽  
Vol 20 (14) ◽  
pp. 5343-5349 ◽  
Author(s):  
J. Cliff Yoon ◽  
Troy W. Chickering ◽  
Evan D. Rosen ◽  
Barry Dussault ◽  
Yubin Qin ◽  
...  

ABSTRACT The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1854
Author(s):  
Tabinda Sidrat ◽  
Zia-Ur Rehman ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
Il-Keun Kong

The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


2018 ◽  
Vol 83 (9) ◽  
pp. 761-769 ◽  
Author(s):  
Andrew A. Nierenberg ◽  
Sharmin A. Ghaznavi ◽  
Isadora Sande Mathias ◽  
Kristen K. Ellard ◽  
Jessica A. Janos ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1490
Author(s):  
Yanxiong Huo ◽  
Xuhong Lu ◽  
Xiaoyu Wang ◽  
Xifan Wang ◽  
Lingli Chen ◽  
...  

Probiotics are widely known for their health benefits. Mitochondrial dysfunction is related to obesity. The aim of this study was to illuminate whether Bifidobacterium animalis subsp. lactis A6 (BAA6) could improve obesity due to increased mitochondrial biogenesis and function of adipose tissues. Four-week-old male C57BL/6 mice were fed with a high-fat diet (HFD) for 17 weeks. For the final eight weeks, the HFD group was divided into three groups including HFD, HFD with BAA6 (HFD + BAA6 group), and HFD with Akkermansia muciniphila (AKK) (HFD + AKK group as positive control). The composition of the microbiota, serum lipopolysaccharides (LPS), and mitochondrial biosynthesis and function of epididymal adipose tissues were measured. Compared with the HFD group, body weight, relative fat weight, the relative abundance of Oscillibacter and Bilophila, and serum LPS were significantly decreased in the HFD + BAA6 and HFD + AKK groups (p < 0.05). Furthermore, the addition of BAA6 and AKK increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (by 21.53- and 18.51-fold), estrogen-related receptor α (ERRα) (by 2.83- and 1.24-fold), and uncoupling protein-1 (UCP-1) (by 1.51- and 0.60-fold) in epididymal adipose tissues. Our results suggest that BAA6 could improve obesity associated with promoting mitochondrial biogenesis and function of adipose tissues in mice.


2010 ◽  
Vol 298 (6) ◽  
pp. E1210-E1218 ◽  
Author(s):  
Liu-Luan Zhu ◽  
Yang Liu ◽  
An-Fang Cui ◽  
Di Shao ◽  
Ji-Chao Liang ◽  
...  

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key regulator of cellular energy metabolism and regulates processes such as adaptive thermogenesis, hepatic gluconeogenesis, fatty acid oxidation, and mitochondrial biogenesis by coactivating numerous nuclear receptors and transcription factors. Here, we demonstrate the presence of the ERRα binding site in the regulatory sequence of the glucokinase gene and that PGC-1α coactivates ERRα to stimulate the transcription of glucokinase. Simultaneous overexpression of PGC-1α and ERRα potently induced the glucokinase gene expression and its enzymatic activity in primary hepatocytes; however, expression of either PGC-1α or ERRα alone had no significant effect. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed the interaction of ERRα with the glucokinase promoter. Finally, the knockdown of endogenous ERRα with specific siRNA (siERRα) or pharmacological inhibition of ERRα with XCT790 attenuated insulin-induced glucokinase expression. Taken together, this research identifies glucokinase as a novel target of PGC-1α/ERRα and underscores the regulatory function of ERRα in insulin-dependent enzyme regulation.


2005 ◽  
Vol 392 (2) ◽  
pp. 313-324 ◽  
Author(s):  
Fokko Zandbergen ◽  
Stéphane Mandard ◽  
Pascal Escher ◽  
Nguan Soon Tan ◽  
David Patsouris ◽  
...  

PPARs (peroxisome-proliferator-activated receptors) α, β/δ and γ are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARα-null mice using microarrays, a novel putative target gene of PPARα, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARα agonist Wy14643 in a PPARα-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson–Golabi–Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARγ and probable PPARα target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.


Sign in / Sign up

Export Citation Format

Share Document