Quality control of protein import into mitochondria

2021 ◽  
Vol 478 (16) ◽  
pp. 3125-3143
Author(s):  
Fabian den Brave ◽  
Jeannine Engelke ◽  
Thomas Becker

Mitochondria import about 1000 proteins that are produced as precursors on cytosolic ribosomes. Defects in mitochondrial protein import result in the accumulation of non-imported precursor proteins and proteotoxic stress. The cell is equipped with different quality control mechanisms to monitor protein transport into mitochondria. First, molecular chaperones guide unfolded proteins to mitochondria and deliver non-imported proteins to proteasomal degradation. Second, quality control factors remove translocation stalled precursor proteins from protein translocases. Third, protein translocases monitor protein sorting to mitochondrial subcompartments. Fourth, AAA proteases of the mitochondrial subcompartments remove mislocalized or unassembled proteins. Finally, impaired efficiency of protein transport is an important sensor for mitochondrial dysfunction and causes the induction of cellular stress responses, which could eventually result in the removal of the defective mitochondria by mitophagy. In this review, we summarize our current understanding of quality control mechanisms that govern mitochondrial protein transport.

Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 563 ◽  
Author(s):  
Pooja Jadiya ◽  
Dhanendra Tomar

Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases.


Author(s):  
Prasad Sulkshane ◽  
Jonathan Ram ◽  
Michael H Glickman

Mitochondria are constantly subjected to stressful conditions due to their unique physiology and organization. The resulting damage leads to mitochondrial dysfunction, which underlies many pathophysiological conditions. Hence, constant surveillance is required to closely monitor mitochondrial health for sound maintenance of cellular metabolism and thus, for viability. In addition to internal mitochondrial chaperones and proteases, mitochondrial health is also governed by host cell protein quality control systems. The Ubiquitin-Proteasome System (UPS) and autophagy constitute the main pathways for removal of damaged or superfluous proteins in the cytosol, nucleus, and from certain organelles such as the ER and mitochondria. Although stress-induced ubiquitin-dependent degradation of mitochondrial outer membrane proteins has been widely studied, mechanisms of intramitochondrial protein ubiquitination have remained largely elusive due to the predominantly cytosolic nature of UPS components, separated from internal mitochondrial proteins by a double membrane. However, recent research has illuminated examples of intramitochondrial protein ubiquitination pathways and highlighted their importance under basal and stressful conditions. Owing to the dependence of mitochondria on the error-prone process of protein import from the cytosol, it is imperative that the cell eliminate any accumulated proteins in the event of mitochondrial import deficiency. Apparently, a significant portion of this activity involves ubiquitination in one way or another. In the present review article, following a brief introduction to mitochondrial protein quality control mechanisms, we discuss our recent understanding of intramitochondrial protein ubiquitination, its importance for the basal function of mitochondria, metabolic implications, and possible therapeutic applications.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1559
Author(s):  
Prasad Sulkshane ◽  
Jonathan Ram ◽  
Michael H Glickman

Mitochondria are constantly subjected to stressful conditions due to their unique physiology and organization. The resulting damage leads to mitochondrial dysfunction, which underlies many pathophysiological conditions. Hence, constant surveillance is required to closely monitor mitochondrial health for sound maintenance of cellular metabolism and thus, for viability. In addition to internal mitochondrial chaperones and proteases, mitochondrial health is also governed by host cell protein quality control systems. The ubiquitin-proteasome system (UPS) and autophagy constitute the main pathways for removal of damaged or superfluous proteins in the cytosol, nucleus, and from certain organelles such as the Endoplasmic Reticulum (ER) and mitochondria. Although stress-induced ubiquitin-dependent degradation of mitochondrial outer membrane proteins has been widely studied, mechanisms of intramitochondrial protein ubiquitination has remained largely elusive due to the predominantly cytosolic nature of UPS components, separated from internal mitochondrial proteins by a double membrane. However, recent research has illuminated examples of intramitochondrial protein ubiquitination pathways and highlighted their importance under basal and stressful conditions. Owing to the dependence of mitochondria on the error-prone process of protein import from the cytosol, it is imperative that the cell eliminate any accumulated proteins in the event of mitochondrial protein import deficiency. Apparently, a significant portion of this activity involves ubiquitination in one way or another. In the present review article, following a brief introduction to mitochondrial protein quality control mechanisms, we discuss our recent understanding of intramitochondrial protein ubiquitination, its importance for basal function of mitochondria, metabolic implications, and possible therapeutic applications.


2016 ◽  
Vol 397 (11) ◽  
pp. 1097-1114 ◽  
Author(s):  
Sebastian P. Straub ◽  
Sebastian B. Stiller ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Abstract Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 107-118 ◽  
Author(s):  
T A Harkness ◽  
R L Metzenberg ◽  
H Schneider ◽  
R Lill ◽  
W Neupert ◽  
...  

Abstract We have used a technique referred to as "sheltered RIP" (repeat induced point mutation) to create mutants of the mom-19 gene of Neurospora crassa, which encodes an import receptor for nuclear encoded mitochondrial precursor proteins. Sheltered RIP permits the isolation of a mutant gene in one nucleus, even if that gene is essential for the survival of the organism, by sheltering the nucleus carrying the mutant gene in a heterokaryon with an unaffected nucleus. Furthermore, the nucleus harboring the RIPed gene contains a selectable marker so that it is possible to shift nuclear ratios in the heterokaryons to a state in which the nucleus containing the RIPed gene predominates in cultures grown under selective conditions. This results in a condition where the target gene product should be present at very suboptimal levels and allows the study of the mutant phenotype. One allele of mom-19 generated by this method contains 44 transitions resulting in 18 amino acid substitutions. When the heterokaryon containing this allele was grown under conditions favoring the RIPed nucleus, no MOM19 protein was detectable in the mitochondria of the strain. Homokaryotic strains containing the RIPed allele exhibit a complex and extremely slow growth phenotype suggesting that the product of the mom-19 gene is important in N. crassa.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 238 ◽  
Author(s):  
Blanca Hernando-Rodríguez ◽  
Marta Artal-Sanz

Mitochondrial functions are essential for life, critical for development, maintenance of stem cells, adaptation to physiological changes, responses to stress, and aging. The complexity of mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing to the need of stoichiometrically assemble the oxidative phosphorylation (OXPHOS) system for ATP production. It requires, in addition, the import of a large number of proteins from the cytosol to keep optimal mitochondrial function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis, while it is itself essential for the synthesis of membrane lipids. To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to ensure that mitochondrial function meets cell, tissue, and organismal demands. Herein, we give an overview of mitochondrial mechanisms that are activated in response to stress, including mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPRmt). We then discuss the role of these stress responses in aging, with particular focus on Caenorhabditis elegans. Finally, we review observations that point to the mitochondrial prohibitin (PHB) complex as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and degradation, and responding to mitochondrial stress. Understanding how mitochondria responds to stress and how such responses are regulated is pivotal to combat aging and disease.


2020 ◽  
Vol 36 (1) ◽  
pp. 141-164
Author(s):  
Lan Wang ◽  
Peter Walter

Mitochondrial function depends on the efficient import of proteins synthesized in the cytosol. When cells experience stress, the efficiency and faithfulness of the mitochondrial protein import machinery are compromised, leading to homeostatic imbalances and damage to the organelle. Yeast Msp1 (mitochondrial sorting of proteins 1) and mammalian ATAD1 (ATPase family AAA domain–containing 1) are orthologous AAA proteins that, fueled by ATP hydrolysis, recognize and extract mislocalized membrane proteins from the outer mitochondrial membrane. Msp1 also extracts proteins that have become stuck in the import channel. The extracted proteins are targeted for proteasome-dependent degradation or, in the case of mistargeted tail-anchored proteins, are given another chance to be routed correctly. In addition, ATAD1 is implicated in the regulation of synaptic plasticity, mediating the release of neurotransmitter receptors from postsynaptic scaffolds to allow their trafficking. Here we discuss how structural and functional specialization imparts the unique properties that allow Msp1/ATAD1 ATPases to fulfill these diverse functions and also highlight outstanding questions in the field.


2016 ◽  
Vol 60 (2) ◽  
pp. 213-225 ◽  
Author(s):  
Wolfgang Voos ◽  
Witold Jaworek ◽  
Anne Wilkening ◽  
Michael Bruderek

Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.


1997 ◽  
Vol 136 (5) ◽  
pp. 983-994 ◽  
Author(s):  
Mitsuru Akita ◽  
Erik Nielsen ◽  
Kenneth Keegstra

Transport of cytoplasmically synthesized proteins into chloroplasts uses an import machinery present in the envelope membranes. To identify the components of this machinery and to begin to examine how these components interact during transport, chemical cross-linking was performed on intact chloroplasts containing precursor proteins trapped at a particular stage of transport by ATP limitation. Large crosslinked complexes were observed using three different reversible homobifunctional cross-linkers. Three outer envelope membrane proteins (OEP86, OEP75, and OEP34) and one inner envelope membrane protein (IEP110), previously reported to be involved in protein import, were identified as components of these complexes. In addition to these membrane proteins, a stromal member of the hsp100 family, ClpC, was also present in the complexes. We propose that ClpC functions as a molecular chaperone, cooperating with other components to accomplish the transport of precursor proteins into chloroplasts. We also propose that each envelope membrane contains distinct translocation complexes and that a portion of these interact to form contact sites even in the absence of precursor proteins.


Author(s):  
Tomáš Takáč ◽  
Olga Šamajová ◽  
Pavol Vadovič ◽  
Tibor Pechan ◽  
Jozef Šamaj

Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses. We present here a shot-gun differential proteomic analysis on roots of two pldα1 mutants compared to the Col-0 wild type. Our data suggest new roles of PLDα1 in endomembrane transport, mitochondrial protein import and protein quality control and glucosinolate biosynthesis. Thus, we identified proteins involved in endocytosis, endoplasmic reticulum-Golgi transport and attachment sites of endoplasmic reticulum and plasma membrane (V-type proton ATPases, protein transport protein SEC13 homolog A, vesicle-associated protein 1-2, vacuolar protein sorting-associated protein 29, syntaxin-32, all upregulated in the mutants), mitochondrial import and electron transport chain (mitochondrial import inner membrane translocase subunits TIM23-2 and TIM13, mitochondrial NADH dehydrogenases, ATP synthases, cytochrome c oxidase subunit 6b-1, ADP,ATP carrier protein 2, downregulated in the mutants) and glucosinolate biosynthesis (3-isopropylmalate dehydrogenases 1, 2 and 3, methylthioalkylmalate synthase 1, cytochrome P450 83B1, Glutathione S-transferase F9, indole glucosinolate O-methyltransferase 1, adenylyl-sulfate kinase 1, all upregulated in mutants). Our results suggest broader biological roles of PLDα1 as anticipated so far.


Sign in / Sign up

Export Citation Format

Share Document