scholarly journals Insulin biosynthesis in the bullhead, Ictalurus nebulosus, and the effect of temperature

1973 ◽  
Vol 134 (3) ◽  
pp. 753-761 ◽  
Author(s):  
Margaret L. Moule ◽  
Cecil C. Yip

Insulin biosynthesis in the brown bullhead, Ictalurus nebulosus (Le Sueur), was studied by measuring the incorporation in vitro of [3H]leucine into proteins of the principal islet. The tissue was incubated for 6–15h in Krebs–Ringer bicarbonate buffer with [3H]leucine, supplemented with amino acids and glucose. Proteins, precipitated with trichloroacetic acid and extracted with acid ethanol, were separated by gel-filtration on Biogel P-30 in 3m-acetic acid. Three major components were found after incubation of the islets at 22°C. On the basis of the results of sulphitolysis, biological activity and the demonstrated precursor–product relationship, components I and II were identified as proinsulin and insulin respectively. The third component was not identified. At 12°C, [3H]leucine was incorporated only into proinsulin. No radioactivity was found in insulin or the unidentified component III at 12°C as was found after incubation at 22°C. When the temperature was lowered from 22° to 12°C after 3h of a 15h incubation, decreased conversion of proinsulin into insulin resulted at the lower temperature compared with the control tissue maintained at 22°C. When the temperature was raised from 12° to 22°C at 3h of a 15h incubation, conversion of proinsulin into insulin occurred. No conversion occurred in the control tissue with the temperature maintained at 12°C. No qualitative difference in the incorporation of [3H]leucine into proinsulin and its conversion into insulin at 12° and 22°C could be demonstrated between islet tissue from fish acclimated to less than 12°C or to 22°C. The results suggest that the enzyme(s) responsible for converting proinsulin into insulin in the bullhead may be temperature sensitive with low activity at 12°C.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gigi Y. Lau ◽  
Georgina K. Cox ◽  
John D. Stieglitz ◽  
Daniel D. Benetti ◽  
Martin Grosell

Abstract Maintaining energy balance over a wide range of temperatures is critical for an active pelagic fish species such as the mahi-mahi (Coryphaena hippurus), which can experience rapid changes in temperature during vertical migrations. Due to the profound effect of temperature on mitochondrial function, this study was designed to investigate the effects of temperature on mitochondrial respiration in permeabilized heart and red skeletal muscle (RM) fibres isolated from mahi-mahi. As RM is thought to be more anatomically isolated from rapid ambient temperature changes compared to the myocardium, it was hypothesized that heart mitochondria would be more tolerant of temperature changes through a greater ability to match respiratory capacity to an increase in temperature and to maintain coupling, when compared to RM mitochondria. Results show that heart fibres were more temperature sensitive and increased respiration rate with temperature increases to a greater degree than RM. Respiratory coupling ratios at the three assay temperatures (20, 26, and 30 °C), revealed that heart mitochondria were less coupled at a lower temperature (26 °C) compared to RM mitochondria (30 °C). In response to an in vitro acute temperature challenge, both tissues showed irreversible effects, where both heart and RM increased uncoupling whether the assay temperature was acutely changed from 20 to 30 °C or 30 to 20 °C. The findings from this study indicate that mahi-mahi heart mitochondria were more temperature sensitive compared to those from RM.


Parasitology ◽  
2020 ◽  
pp. 1-9
Author(s):  
Summia Perveen ◽  
Yuhua Lei ◽  
Fei Yin ◽  
Chunlin Wang

Abstract Mesanophrys sp. is a newly identified parasitic ciliate infecting farmed swimming crab. To demonstrate the correlation between parasite development and environmental conditions, this study aimed to investigate the effect of temperature, salinity, pH and frequency of passage of parasite on survival, growth and body size of Mesanophrys sp. in vitro. The results revealed that survival, population density and growth rate of the parasite were highest at 12°C and decreased with increasing temperature from 16 to 26°C. In addition, the survival, population density and growth rate of Mesanophrys sp. were high at 20‰. When salinity was adjusted to levels lower (0–10‰) and higher (40–60‰) than 20‰, the parasite's survival and growth rate gradually declined. The optimal pH for parasite survival was 8.0, whereas its survival was inhibited at <4.5 or >9.5. Our result also showed that parasite body proportions (length:width) were significantly smaller at the highest temperature compared to the lower temperature, whereas different salinities had no significant effect. Furthermore, we introduced dynamic parasite culture systems in vitro where Mesanophrys sp. was cultured in medium-containing culture plates through continually reducing and halving the old medium into fresh. Application of this optimized dilution timing technique with fresh medium and sub-cultured enabled a continuous culture of parasites. Under this optimized condition, the highest population density and exponential growth rate of the parasite were achieved than that of a control group. This study will help to understand the ciliated parasite infection dynamics and provides new possibilities for in vitro parasite-associated studies.


2005 ◽  
Vol 288 (5) ◽  
pp. R1195-R1202 ◽  
Author(s):  
Sean P. Place ◽  
Gretchen E. Hofmann

Although a great deal is known about the cellular function of molecular chaperones in general, very little is known about the effect of temperature selection on the function of molecular chaperones in nonmodel organisms. One major unanswered question is whether orthologous variants of a molecular chaperone from differential thermally adapted species vary in their thermal responses. To address this issue, we utilized a comparative approach to examine the temperature interactions of a major cytosolic molecular chaperone, Hsc70, from differently thermally adapted notothenioids. Using in vitro assays, we measured the ability of Hsc70 to prevent thermal aggregation of lactate dehydrogenase (LDH). We further compared the capacity of Hsc70 to refold chemically denatured LDH over the temperature range of −2 to +45°C. Hsc70 purified from the temperate species exhibited greater ability to prevent the thermal denaturation of LDH at 55°C compared with Hsc70 from the cold-adapted species. Furthermore, Hsc70 from the Antarctic species lost the ability to competently refold chemically denatured LDH at a lower temperature compared with Hsc70 from the temperate species. These data indicate the function of Hsc70 in notothenioid fishes maps onto their thermal history and that temperature selection has acted on these molecular chaperones.


2001 ◽  
Vol 85 (5) ◽  
pp. 2070-2075 ◽  
Author(s):  
Michelle Moyer ◽  
Erik van Lunteren

The amplitude of neuromuscular junction end-plate potentials (EPPs) decreases quickly within a train but recovers nearly completely from train to train during intermittent stimulation. Rundown has been shown to be dependent not only on the rate of transmitter release but also on the rate of replenishment of the depleted neurotransmitter at the site of release. Two groups of processes have been proposed for synaptic vesicle recycling, both of which involve multiple energy-requiring steps and enzymatic reactions and which therefore would be expected to be very temperature-sensitive. The present study tested the hypothesis that low temperature therefore increases the rate of EPP amplitude rundown. Studies were performed in vitro on rat diaphragm and used μ-conotoxin to allow normal-sized EPPs to be recorded from intact fibers. EPP amplitude rundown during intermittent stimulation at 20 and 50 Hz (duty cycle 333 ms) was greater at 20°C than it was at 37°C. Initially, temperature affected only intra-train rundown but, over longer periods of stimulation, both intra- and inter-train rundown were significantly accelerated by cold temperature. Cumulative EPP amplitudes were calculated by successively adding the amplitudes of each EPP during the stimulation period to provide an estimate of total neurotransmitter release in the neuromuscular junction. The cumulative EPP amplitude was significantly lower at 20°C than it was at 37°C during both 20 and 50 Hz stimulation. These data indicate that the mechanism involved in EPP amplitude rundown and recovery is temperature-sensitive, with a greater decrement in EPP amplitude at cold than at warm temperatures.


1999 ◽  
Vol 10 (11) ◽  
pp. 3643-3659 ◽  
Author(s):  
Bonny G. Yeung ◽  
Huan L. Phan ◽  
Gregory S. Payne

Clathrin-associated adaptor protein (AP) complexes are major structural components of clathrin-coated vesicles, functioning in clathrin coat assembly and cargo selection. We have carried out a systematic biochemical and genetic characterization of AP complexes inSaccharomyces cerevisiae. Using coimmunoprecipitation, the subunit composition of two complexes, AP-1 and AP-2R, has been defined. These results allow assignment of the 13 potential AP subunits encoded in the yeast genome to three AP complexes. As assessed by in vitro binding assays and coimmunoprecipitation, only AP-1 interacts with clathrin. Individual or combined disruption of AP-1 subunit genes in cells expressing a temperature-sensitive clathrin heavy chain results in accentuated growth and α-factor pheromone maturation defects, providing further evidence that AP-1 is a clathrin adaptor complex. However, in cells expressing wild-type clathrin, the same AP subunit deletions have no effect on growth or α-factor maturation. Furthermore, gel filtration chromatography revealed normal elution patterns of clathrin-coated vesicles in cells lacking AP-1. Similarly, combined deletion of genes encoding the β subunits of the three AP complexes did not produce defects in clathrin-dependent sorting in the endocytic and vacuolar pathways or alterations in gel filtration profiles of clathrin-coated vesicles. We conclude that AP complexes are dispensable for clathrin function in S. cerevisiae under normal conditions. Our results suggest that alternative factors assume key roles in stimulating clathrin coat assembly and cargo selection during clathrin-mediated vesicle formation in yeast.


1983 ◽  
Vol 157 (4) ◽  
pp. 1229-1238 ◽  
Author(s):  
H D Jampel ◽  
G W Duff ◽  
R K Gershon ◽  
E Atkins ◽  
S K Durum

We have examined the possibility that hyperthermia, such as that occurring during fever, may benefit the immune response. The effect of temperature on the in vitro immune response of unprimed murine spleen cells against the antigen sheep erythrocytes was tested. Hyperthermia potently augmented the plaque-forming cell response. Temperature-sensitive events occurred early in the culture period. Subsets of lymphocytes were independently assessed for effects of temperature on their activation and function. We showed that the beneficial effect of elevated temperature on the plaque-forming cell response probably occurs during the priming stage of T helper cells, and neither improves the delivery of help or the activation of B cells, nor impairs suppressor T cell generation or function. We propose that this powerful immunopotentiating effect of hyperthermia may account for the selective value of the fever response. This suggests taht the monokine interleukin 1, which is the endogenous mediator of fever, may promote immune responses both through a direct action on lymphocytes, and indirectly by an action on the central nervous system resulting in fever.


2004 ◽  
Vol 279 (44) ◽  
pp. 45546-45555 ◽  
Author(s):  
Takuma Ishida ◽  
Nobuyoshi Akimitsu ◽  
Tamami Kashioka ◽  
Masakazu Hatano ◽  
Toshio Kubota ◽  
...  

The DnaA protein is the initiator ofEscherichia colichromosomal replication. In this study, we identify a novel DnaA-associating protein, DiaA, that is required for the timely initiation of replication during the cell cycle. DiaA promotes the growth of specific temperature-sensitivednaAmutants and ensures stable minichromosome maintenance, whereas DiaA does not decrease the cellular DnaA content. AdiaA::Tn5mutation suppresses the cold-sensitive growth of an overinitiation typednaAmutant independently of SeqA, a negative modulator of initiation. Flow cytometry analyses revealed that the timing of replication initiation is disrupted in thediaAmutant cells as well as wild-type cells with pBR322 expressing thediaAgene. Gel filtration and chemical cross-linking experiments showed that purified DiaA forms a stable homodimer. Immunoblotting analysis indicated that a single cell contains about 280 DiaA dimers. DiaA stimulates minichromosome replication in anin vitrosystem especially when the level of DnaA included is limited. Moreover, specific and direct binding between DnaA and DiaA was observed, which requires a DnaA N-terminal region. DiaA binds to both ATP- and ADP-bound forms of DnaA with a similar affinity. Thus, we conclude that DiaA is a novel DnaA-associating factor that is crucial to ensure the timely initiation of chromosomal replication.


1978 ◽  
Vol 34 (1) ◽  
pp. 117-131
Author(s):  
P.O. Seglen ◽  
R. Gjessing

The attachment of rat hepatocytes to polystyrene-adsorbed serum protein is relatively insensitive to inhibitors such as dextran sulphate, cycloheximide, colchicine and cytochalasin B, and enzymes like trypsin and neuraminidase, but it is strongly dependent on divalent cations. Mg2+ supports attachment better than Ca2+, but a combination of both is required for maximal attachment. The attachment is very temperature-sensitive, with a biphasic Arrhenius plot indicating an activation energy of 123 kJ/mol above 34 degrees C and 374 kJ/mol below 34 degrees C. The adsorbed attachment-promoting serum factor is inactivated by trypsin, or by Ca2+-dependent proteases which contaminate commercial preparations of collagenase. The adsorbed factor is resistant to treatment with glutaraldehyde, neuraminidase and heating to 90 degrees C, whereas the same factor in the unadsorbed state (in serum) is destroyed by heating to 70 degrees C. The factor in serum is unable to compete with the adsorbed factor for cell binding, hence it would appear that adsorption to polystyrene induces the active, heat-resistant conformation of the factor.


1990 ◽  
Vol 80 (3) ◽  
pp. 431-436 ◽  
Author(s):  
Isabelle Delvallee ◽  
Annie Paffen ◽  
Geert-Jan De Klerk

1973 ◽  
Vol 29 (01) ◽  
pp. 183-189
Author(s):  
C. A Praga ◽  
E. M Pogliani

SummaryTemperature represents a very important variable in ADP-induced platelet aggregation.When low doses of ADP ( < 1 (μM) are used to induce platelet aggregation, the length of the incubation period of PRP in the cuvette holder of the aggregometer, thermostatted at 37° C, is very critical. Samples of the same PRP previously kept at room temperature, were incubated for increasing periods of time in the cuvette of the aggregometer before adding ADP, and a significant decrease of aggregation, proportional to the length of incubation, was observed. Stirring of the PRP during the incubation period made these changes more evident.To measure the exact temperature of the PRP during incubation in the aggre- gometer, a thermocouple device was used. While the temperature of the cuvette holder was stable at 37° C, the PRP temperature itself increased exponentially, taking about ten minutes from the beginning of the incubation to reach the value of 37° C. The above results have a practical significance in the reproducibility of the platelet aggregation test in vitro and acquire particular value when the effect of inhibitors of ADP induced platelet aggregation is studied.Experiments carried out with three anti-aggregating agents (acetyl salicyclic acid, dipyridamole and metergoline) have shown that the incubation conditions which influence both the effect of the drugs on platelets and the ADP breakdown in plasma must be strictly controlled.


Sign in / Sign up

Export Citation Format

Share Document