scholarly journals Structural defects in rat liver deoxyribonucleic acid. Endogenous single-strained regions in comparison with damage induced in vivo by a carcinogen

1979 ◽  
Vol 179 (2) ◽  
pp. 341-352 ◽  
Author(s):  
B W Stewart ◽  
P H Huang ◽  
M J Brian

Rat liver DNA may be separated into two fractions by stepwise elution from benzoylated-DEAE-cellulose with NaCl and caffeine solutions respectively. Other studies using bacterical and yeast DNA suggested that the first fraction contains native DNA, whereas the second may exhibit some degree of single-stranded character. In the present experiments, chromatography of DNA was monitored by labelling in vivo with [methyl-3H]thymidine in rats previously subjected to partial hepatectomy. In animals killed up to 1 h after thymidine injection, radioactivity eluted in the second fraction was inversely related to the incorporation time, being greatest when animals were killed 10 min after radioisotope injection. However, for most experiments, animals were allowed to survive 2-4 weeks after surgery before use, analysis being made on non-dividing DNA. Under these conditions, the proportion of caffeine-eluted DNA was decreased by subjecting the preparation to shear, before chromatography. A procedure that resulted in 12% of the recovered radioactivity being eluted with caffeine was adopted for experiments involving comparisons of the two DNA fractions. Under these conditions, cross-contamination could be detected by rechromatography, but this did not preclude distinction being made between the two fractions in terms of DNA structure. NaCl-eluted DNA did not bind to nitrocellulose filters. Caffeine-eluted DNA was retained by the filters and released by washing with 3mM-Tris/HCl, pH9.4. The fractions did not differ in terms of isopycnic centrifugation in CsCl. The NaCl-eluted fraction migrated as a single band in polyacrylamide gels, and this pattern was not modified by prior digestion with Neurospora crassa endonuclease. In contrast, caffeine-eluted DNA contained a minor component having a wide molecular-weight distribution and was subject to limited digestion by the endonuclease. The kinetics of denaturation of NaCi-eluted DNA in the presence of formaldehyde, in common with unfractionated DNA, were consistent with double-stranded structure. The same analysis of caffeine-eluted DNA revealed structural abnormality equivalent to two defects per 10000 base-pairs. The data are consistent with the minor fraction of rat liver DNA, separated by using benzoylated-DEAE-cellulose, containing regions of local denaturation. We previously showed that administration of the hepatocarcinogen dimethylnitrosamine is associated with an increase in the proportion of caffeine-eluted DNA. In terms of most analysis, differences between DNA fraction from nitrosamine-treated rats were similar to differences exhibited by preparations from control animals. However, structural analysis using denaturation kinetics indicated defects in both the NaCl- and caffeine-eluted DNA isolated from nitrosamine-treated rats. The two fractions differed from each other in that caffeine-eluted DNA exhibited a degree of structural damage far greater than that detected in any preparation from control animals...

1971 ◽  
Vol 125 (4) ◽  
pp. 1039-1047 ◽  
Author(s):  
M J Arslanian ◽  
E Pascoe ◽  
J G Reinhold

Alcohol dehydrogenase (EC 1.1.1.1) from the rat liver supernatant fraction has been purified 200-fold and partially characterized. The isolation procedure involved ammonium sulphate fractionation, DEAE-Sephadex chromatography and gel filtration. The purified enzyme behaved as a homogeneous preparation as evaluated by cellulose acetate and polyacrylamide-gel disc electrophoresis. Sulphoethyl-Sephadex chromatography and immunoelectrophoresis with rabbit antiserum indicated the presence of a minor component. Rat liver alcohol dehydrogenase appears to contain 4mol of zinc/mol, has an estimated molecular weight of 65000 and consists of two subunits of similar molecular weight. Heavy-metal ions, thiol-blocking reagents, urea at concentrations below 8m, low pH (5.5) and chelating agents deactivate the enzyme but do not dissociate it into subunits. Deactivated enzyme could not be reactivated. The enzyme is strictly specific for NAD+ and has a broad specificity for alcohols, which are bound at a hydrophobic site. Inhibition occurred with the enzyme equilibrated with Zn2+ at concentrations above 0.1mm.


1973 ◽  
Vol 135 (3) ◽  
pp. 457-462 ◽  
Author(s):  
J. U. Ikonne ◽  
R. B. Ellis

1. Hexosaminidase A of human serum was resolved into two components, a minor form with properties identical with those of the single hexosaminidase A component of human liver, and a major form with significantly different properties. 2. The major serum hexosaminidase A form was eluted from a DEAE-cellulose column at a lower salt concentration than that required to elute the liver form. 3. A multiple-pass technique was used to elute the major serum enzyme A from a Sephadex G-150 column before that of liver enzyme A. 4. Clostridium perfringens neuraminidase converted the major component of serum hexosaminidase A into a form that was held less tightly by DEAE-cellulose, but the minor component of the A enzyme of serum, and the A enzyme of liver were not affected. 5. The hexosaminidase A from tears was similar to the A enzyme from serum, whereas those from several human tissues and from urine and lymph were similar to the liver form. 6. The A enzyme from serum may be derived from the A enzyme from liver by glycosylation before secretion.


1976 ◽  
Vol 160 (3) ◽  
pp. 495-503 ◽  
Author(s):  
M D Dabeva ◽  
K P Dudov ◽  
A A Hadjiolov ◽  
I Emanuilov ◽  
B N Todorov

The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6×10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5′-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8×10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25×10(6) mol.wt.(41S), a precursor common to both mature rRNA species; 2.60×10(6)(36S) and 2.15×10(6)(32S) precursors to 28S rRNA; 1.05×10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S → 41S → 32S+21S → 28S+18S rRNA and (ii) 45S → 41S → 36S+18S → 32S → 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9×10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.


1994 ◽  
Vol 298 (1) ◽  
pp. 79-85 ◽  
Author(s):  
A Tsuji ◽  
T Akamatsu ◽  
H Nagamune ◽  
Y Matsuda

The alpha 1-macroglobulin-proteinase complex endocytosed into rat liver lysosomes was purified by a series of column chromatographic steps on concanavalin A-Sepharose, Sephacryl S-300, DEAE-cellulose and TSK gel DEAE-5PW columns. The complex contained no detectable alpha 2-macroglobulin. Studies on the substrate specificity indicated that the complex had tryptase-like activities towards various synthetic substrates, but no elastase, chymotrypsin, cathepsin-B and cathepsin-L activities. The proteinase activity was completely inhibited by di-isopropyl fluorophosphate, leupeptin and antipain, indicating that the proteinase bound to alpha 1-macroglobulin is a serine proteinase. Two protein bands (62 and 59 kDa) of the complex were labelled with [3H]diisopropyl fluorophosphate and both bands cross-reacted with anti-(mast-cell tryptase)antibody. These results suggest that mast-cell tryptase is a major targeting proteinase for alpha 1-macroglobulin in vivo. The main alpha-macroglobulin-proteinase complex in the adjuvant-treated rats was also the alpha 1-macroglobulin-tryptase complex, even though the plasma level of alpha 2-macroglobulin was elevated.


1960 ◽  
Vol 13 (1) ◽  
pp. 69 ◽  
Author(s):  
IJ O'donnell ◽  
EOP Thompson

The effect of ionic strength (range 0,15-0, 3), pH (range 7-9), and temperature (range I-25�C) on the chromatographic behaviour of three samples of insulin on diethylaminoethyl (DEAE)-cellulose columns has been studied. These three factors have a similar effect, a decrease of temperature or pH and an increase in ionic strength lowering the elution volume of the protein. The marked effect of temperature is not due to aggregation-disaggregation of the insulin since bovine plasma albumin which does not aggregate reversibly also showed this effect. The desamido component of insulin could not be detected in commercial insulin under the conditions studied but a minor component varying from 2-6 per cent. of the insulin was separated, as well as various amounts of bound ammonia. Removal of zinc from the insulin did not affect the elution curve.


1993 ◽  
Vol 265 (2) ◽  
pp. H581-H585 ◽  
Author(s):  
T. Kitazono ◽  
D. D. Heistad ◽  
F. M. Faraci

Stimulation of adenylate cyclase appears to activate ATP-sensitive K+ channels in the basilar artery. We tested the hypothesis that calcitonin gene-related peptide (CGRP), which increases intracellular adenosine 3',5'-cyclic monophosphate (cAMP) levels, activates ATP-sensitive K+ channels and thereby causes vasodilatation. Using a cranial window in anesthetized rats, we examined responses of the basilar artery to CGRP in vivo. We also examined responses of the artery to another vasoactive peptide, vasoactive intestinal peptide (VIP). Topical application of CGRP (10(-11) to 10(-8) M) increased diameter of the basilar artery. Responses of the basilar artery to CGRP were almost abolished by a CGRP1 receptor antagonist, CGRP-(8-37). Vasodilatation in response to VIP was much smaller than that produced by CGRP. Dilator responses of the basilar artery to 10(-9) and 10(-8) M CGRP were inhibited by glibenclamide (10(-6) M), a selective inhibitor of ATP-sensitive K+ channels, by 69 +/- 19 and 41 +/- 9%, respectively. NG-nitro-L-arginine methyl ester (10(-5) M), an inhibitor of nitric oxide synthase, did not attenuate dilator response to 10(-8) M CGRP but inhibited responses to 10(-9) M CGRP by 34 +/- 12%. Indomethacin did not alter dilator responses to CGRP. These findings suggest that a minor component of CGRP-induced dilatation of the basilar artery is mediated by endothelium-derived relaxing factor. Vasodilatation in response to CGRP appears to be mediated primarily by direct activation of CGRP1 receptors on vascular muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 372 (1730) ◽  
pp. 20160394 ◽  
Author(s):  
Martina Bec̆ková ◽  
Jianfeng Yu ◽  
Vendula Krynická ◽  
Amanda Kozlo ◽  
Shengxi Shao ◽  
...  

One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.


1973 ◽  
Vol 133 (4) ◽  
pp. 641-654 ◽  
Author(s):  
Louis S. Swart ◽  
Thomas Haylett

The complete amino acid sequences of wool protein SCMKB-IIIA3 (131 residues) and a minor component SCMKB-IIIA3A (130 residues) have been determined. The proteins are mutually homologous and have free threonine as the N-terminal residue and carboxymethylcysteine as the C-terminus. The peptides used for the sequence work were obtained by trypsin, thermolysin, pepsin and chymotrypsin digestions and were fractionated by chromatography on DEAE-cellulose, gel filtration on Sephadex G-25 and G-50, paper chromatography and electrophoresis. The Edman degradation method (employing both the Beckman Sequencer and a non-automatic procedure) was used to obtain the sequences of the peptides.


2019 ◽  
Vol 5 (3) ◽  
pp. eaat4872 ◽  
Author(s):  
Sergio Botero ◽  
Rachel Chiaroni-Clarke ◽  
Sanford M. Simon

Despite being a minor component of cells, phosphoinositides are essential for eukaryotic membrane biology, serving as markers of organelle identity and involved in several signaling cascades. Their many functions, combined with alternative synthesis pathways, make in vivo study very difficult. In vitro studies are limited by their inability to fully recapitulate the complexities of membranes in living cells. We engineered the biosynthetic pathway for the most abundant phosphoinositides into the bacterium Escherichia coli, which is naturally devoid of this class of phospholipids. These modified E. coli, when grown in the presence of myo-inositol, incorporate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-4,5-bisphosphate (PIP2), and phosphatidylinositol-3,4,5-trisphosphate (PIP3) into their plasma membrane. We tested models of biophysical mechanisms with these phosphoinositides in a living membrane, using our system to evaluate the role of PIP2 in nonconventional protein export of human basic fibroblast growth factor 2. We found that PI alone is sufficient for the process.


1986 ◽  
Vol 64 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Paul Zung ◽  
Carmelo Domenicucci ◽  
Safia Wasi ◽  
Fumiyuki Kuwata ◽  
Jaro Sodek

Osteonectin is a major glycoprotein of porcine and bovine bones and teeth that is found associated with hydroxylapatite crystal surfaces. From the ability of osteonectin to bind calcium ions, it has been proposed as a possible nucleator of hydroxylapatite crystal formation. Analysis of hydroxylapatite-bound proteins of rat bone and dentine, however, has revealed that osteonectin represents only 2.5 ± 1.5% of the hydroxylapatite-bound protein in long bones, 0.9 ± 0.5% in calvariae, and < 0.1% in incisor dentine of animals of different ages. Further, in vivo pulse–chase studies carried out in young adult rats have shown osteonectin to be synthesized at low levels in these tissues. Similarly, low levels of osteonectin were synthesized by rat calvarial cells in vitro. In contrast, fibroblastic cells from periodontal ligament and gingiva synthesized significantly greater amounts of osteonectin. These studies indicate that the low quantities of osteonectin in rat mineralized tissues are a consequence of low rates of formation rather than being due to rapid turnover. The virtual absence of osteonectin in incisor dentine correlates with the lack of peritubular dentine in rat, whereas the low osteonectin content of rat bones may reflect differences in their structure and biophysical properties compared with bones of larger mammals.


Sign in / Sign up

Export Citation Format

Share Document