scholarly journals Membrane insertion of the N-terminal α-helix of equinatoxin II, a sea anemone cytolytic toxin

2004 ◽  
Vol 384 (2) ◽  
pp. 421-428 ◽  
Author(s):  
Ion GUTIÉRREZ-AGUIRRE ◽  
Ariana BARLIČ ◽  
Zdravko PODLESEK ◽  
Peter MAČEK ◽  
Gregor ANDERLUH ◽  
...  

Equinatoxin II (Eqt-II) is a member of the actinoporins, a unique family of cytotoxins comprising 20 kDa pore-forming proteins isolated from sea anemones. Actinoporins bind preferentially to lipid membranes containing sphingomyelin, and create cation-selective pores by oligomerization of three to four monomers. Previous studies have shown that regions of Eqt-II crucial for its cytolytic mechanism are an exposed aromatic cluster and the N-terminal region containing an amphipathic α-helix. In the present study, we have investigated the transfer of the N-terminal α-helix into the lipid membrane by the use of three mutants containing an additional tryptophan residue in different positions within the amphipathic α-helix (Ile18→Trp, Val22→Trp and Ala25→Trp). The interaction of the mutants with different model systems, such as lipid monolayers, erythrocytes and ghost membranes, was extensively characterized. Intrinsic fluorescence measurements and the use of vesicles containing brominated phospholipids indicated a deep localization of the N-terminal amphipathic helix in the lipid bilayer, except for the case of Val22→Trp. This mutant is stabilized in a state immediately prior to final pore formation. The introduction of additional tryptophan residues in the sequence of Eqt-II has proved to be a suitable approach to monitor the new environments that surround defined regions of the molecule upon membrane interaction.

2000 ◽  
Vol 346 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Petra MALOVRH ◽  
Ariana BARLIĆ ◽  
Zdravko PODLESEK ◽  
Peter MAĆEK ◽  
Gianfranco MENESTRINA ◽  
...  

Equinatoxin II (EqtII) is a eukaryotic cytolytic toxin that avidly creates pores in natural and model lipid membranes. It contains five tryptophan residues in three different regions of the molecule. In order to study its interaction with the lipid membranes, three tryptophan mutants, EqtII Trp45, EqtII Trp116/117 and EqtII Trp149, were prepared in an Escherichia coli expression system [here, the tryptophan mutants are classified according to the position of the remaining tryptophan residue(s) in each mutated protein]. They all possess a single intrinsic fluorescent centre. All mutants were less haemolytically active than the wild-type, although the mechanism of erythrocyte damage was the same. EqtII Trp116/117 resembles the wild-type in terms of its secondary structure content, as determined from Fourier-transform infrared (FTIR) spectra and its fluorescent properties. Tryptophans at these two positions are buried within the hydrophobic interior of the protein, and are transferred to the lipid phase during the interaction with the lipid membrane. The secondary structure of the other two mutants, EqtII Trp45 and EqtII Trp149, was altered to a certain extent. EqtII Trp149 was the most dissimilar from the wild-type, displaying a higher content of random-coil structure. It also retained the lowest number of nitrogen-bound protons after exchange with 2H2O, which might indicate a reduced compactness of the molecule. Tryptophans in EqtII Trp45 and EqtII Trp149 were more exposed to water, and also remained as such in the membrane-bound form.


2000 ◽  
Vol 348 (1) ◽  
pp. 103-106 ◽  
Author(s):  
Shao-Xiong WANG ◽  
Yu-Tong SUN ◽  
Sen-Fang SUI

The interaction of apolipoprotein H (Apo H) with lipid membrane has been considered to be a basic mechanism for the biological function of the protein. Previous reports have demonstrated that Apo H can interact only with membranes containing anionic phospholipids. Here we study the membrane-induced conformational change of Apo H by CD spectroscopy with two different model systems: anionic-phospholipid-containing liposomes [such as 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and cardiolipin], and the water/methanol mixtures at moderately low pH, which mimic the micro-physicochemical environment near the membrane surface. It is found that Apo H undergoes a remarkable conformational change on interaction with liposomes containing anionic phospholipid. To interact with liposomes containing DMPG, there is a 6.8% increase in α-helix in the secondary structures; in liposomes containing cardiolipin, however, there is a 12.6% increase in α-helix and a 9% decrease in β-sheet. The similar conformation change in Apo H can be induced by treatment with an appropriate mixture of water/methanol. The results indicate that the association of Apo H with membrane is correlated with a certain conformational change in the secondary structure of the protein.


2021 ◽  
Vol 22 (18) ◽  
pp. 10085
Author(s):  
Aritz B. García-Arribas ◽  
Félix M. Goñi ◽  
Alicia Alonso

Lipid model membranes are important tools in the study of biophysical processes such as lipid self-assembly and lipid–lipid interactions in cell membranes. The use of model systems to adequate and modulate complexity helps in the understanding of many events that occur in cellular membranes, that exhibit a wide variety of components, including lipids of different subfamilies (e.g., phospholipids, sphingolipids, sterols…), in addition to proteins and sugars. The capacity of lipids to segregate by themselves into different phases at the nanoscale (nanodomains) is an intriguing feature that is yet to be fully characterized in vivo due to the proposed transient nature of these domains in living systems. Model lipid membranes, instead, have the advantage of (usually) greater phase stability, together with the possibility of fully controlling the system lipid composition. Atomic force microscopy (AFM) is a powerful tool to detect the presence of meso- and nanodomains in a lipid membrane. It also allows the direct quantification of nanomechanical resistance in each phase present. In this review, we explore the main kinds of lipid assemblies used as model membranes and describe AFM experiments on model membranes. In addition, we discuss how these assemblies have extended our knowledge of membrane biophysics over the last two decades, particularly in issues related to the variability of different model membranes and the impact of supports/cytoskeleton on lipid behavior, such as segregated domain size or bilayer leaflet uncoupling.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Damian Dziubak ◽  
Kamil Strzelak ◽  
Slawomir Sek

Supported lipid membranes are widely used platforms which serve as simplified models of cell membranes. Among numerous methods used for preparation of planar lipid films, self-assembly of bicelles appears to be promising strategy. Therefore, in this paper we have examined the mechanism of formation and the electrochemical properties of lipid films deposited onto thioglucose-modified gold electrodes from bicellar mixtures. It was found that adsorption of the bicelles occurs by replacement of interfacial water and it leads to formation of a double bilayer structure on the electrode surface. The resulting lipid assembly contains numerous defects and pinholes which affect the permeability of the membrane for ions and water. Significant improvement in morphology and electrochemical characteristics is achieved upon freeze–thaw treatment of the deposited membrane. The lipid assembly is rearranged to single bilayer configuration with locally occurring patches of the second bilayer, and the number of pinholes is substantially decreased. Electrochemical characterization of the lipid membrane after freeze–thaw treatment demonstrated that its permeability for ions and water is significantly reduced, which was manifested by the relatively high value of the membrane resistance.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 192
Author(s):  
Kinga Burdach ◽  
Dagmara Tymecka ◽  
Aneta Urban ◽  
Robert Lasek ◽  
Dariusz Bartosik ◽  
...  

The increasing resistance of bacteria to available antibiotics has stimulated the search for new antimicrobial compounds with less specific mechanisms of action. These include the ability to disrupt the structure of the cell membrane, which in turn leads to its damage. In this context, amphiphilic lipopeptides belong to the class of the compounds which may fulfill this requirement. In this paper, we describe two linear analogues of battacin with modified acyl chains to tune the balance between the hydrophilic and hydrophobic portion of lipopeptides. We demonstrate that both compounds display antimicrobial activity with the lowest values of minimum inhibitory concentrations found for Gram-positive pathogens. Therefore, their mechanism of action was evaluated on a molecular level using model lipid films mimicking the membrane of Gram-positive bacteria. The surface pressure measurements revealed that both lipopeptides show ability to bind and incorporate into the lipid monolayers, resulting in decreased ordering of lipids and membrane fluidization. Atomic force microscopy (AFM) imaging demonstrated that the exposure of the model bilayers to lipopeptides leads to a transition from the ordered gel phase to disordered liquid crystalline phase. This observation was confirmed by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) results, which revealed that lipopeptide action causes a substantial increase in the average tilt angle of lipid acyl chains with respect to the surface normal to compensate for lipopeptide insertion into the membrane. Moreover, the peptide moieties in both molecules do not adopt any well-defined secondary structure upon binding with the lipid membrane. It was also observed that a small difference in the structure of a lipophilic chain, altering the balance between hydrophobic and hydrophilic portion of the molecules, results in different insertion depth of the active compounds.


2001 ◽  
Vol 68 ◽  
pp. 95-110 ◽  
Author(s):  
Andrew J. Doig ◽  
Charles D. Andrew ◽  
Duncan A. E. Cochran ◽  
Eleri Hughes ◽  
Simon Penel ◽  
...  

Pauling first described the α-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 310-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or αL C-cap motif. The kinetics of α-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 430 ◽  
Author(s):  
Anja Sadžak ◽  
Janez Mravljak ◽  
Nadica Maltar-Strmečki ◽  
Zoran Arsov ◽  
Goran Baranović ◽  
...  

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.


2013 ◽  
Vol 33 (5) ◽  
Author(s):  
Chi L. L. Pham ◽  
Roberto Cappai

The deposition of α-syn (α-synuclein) as amyloid fibrils and the selective loss of DA (dopamine) containing neurons in the substantia nigra are two key features of PD (Parkinson's disease). α-syn is a natively unfolded protein and adopts an α-helical conformation upon binding to lipid membrane. Oligomeric species of α-syn have been proposed to be the pathogenic species associated with PD because they can bind lipid membranes and disrupt membrane integrity. DA is readily oxidized to generate reactive intermediates and ROS (reactive oxygen species) and in the presence of DA, α-syn form of SDS-resistant soluble oligomers. It is postulated that the formation of the α-syn:DA oligomers involves the cross-linking of DA-melanin with α-syn, via covalent linkage, hydrogen and hydrophobic interactions. We investigate the effect of lipids on DA-induced α-syn oligomerization and studied the ability of α-syn:DA oligomers to interact with lipids vesicles. Our results show that the interaction of α-syn with lipids inhibits the formation of DA-induced α-syn oligomers. Moreover, the α-syn:DA oligomer cannot interact with lipid vesicles or cause membrane permeability. Thus, the formation of α-syn:DA oligomers may alter the actions of α-syn which require membrane association, leading to disruption of its normal cellular function.


2021 ◽  
Vol 14 (10) ◽  
pp. 1062
Author(s):  
Tomasz Róg ◽  
Mykhailo Girych ◽  
Alex Bunker

We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard “lock and key” paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.


Author(s):  
M. Austin Creasy ◽  
Donald J. Leo

Biological systems demonstrate autonomous healing of damage and are an inspiration for developing self-healing materials. Our recent experimental study has demonstrated that a bilayer lipid membrane (BLM), also called a black lipid membrane, has the ability to self-heal after mechanical failure. These molecules have a unique property that they spontaneously self assembly into organized structures in an aqueous medium. The BLM forms an impervious barrier to ions and fluid between two volumes and strength of the barrier is dependent on the pressure and electrical field applied to the membrane. A BLM formed over an aperture on a silicon substrate is shown to self-heal for 5 pressurization failure cycles.


Sign in / Sign up

Export Citation Format

Share Document