Structural requirements of KTS-disintegrins for inhibition of α1β1 integrin

2008 ◽  
Vol 417 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Meghan C. Brown ◽  
Johannes A. Eble ◽  
Juan J. Calvete ◽  
Cezary Marcinkiewicz

Obtustatin and viperistatin represent the shortest known snake venom monomeric disintegrins. In the present study, we have produced recombinant full-length wild-type and site-directed mutants of obtustatin to assess the role of the K21TS23 tripeptide and C-terminal residues for specific inhibition of the α1β1 integrin. Thr22 appeared to be the most critical residue for disintegrin activity, whereas substitution of the flanking lysine or serine residues for alanine resulted in a less pronounced decrease in the anti-α1β1 integrin activity of the disintegrin. The triple mutant A21AA23 was devoid of blocking activity towards α1β1 integrin-mediated cell adhesion. The potency of recombinant KTS-disintegrins also depended on the residue C-terminally adjacent to the active motif. Substitution of Leu24 of wild-type obtustatin for an alanine residue slightly decreased the inhibitory activity of the mutant, whereas an arginine residue in this position enhanced the potency of the mutant over wild-type obtustatin by 6-fold. In addition, the replacements L38V and P40Q may account for a further 25-fold increase in α1β1 inhibitory potency of viperistatin over KTSR-obtustatin.

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xiaoqian Fang ◽  
Dong H Kim ◽  
Teresa Santiago-Sim

Introduction: An intracranial aneurysm (IA) is a weak spot in cerebral blood vessel wall that can lead to its abnormal bulging. Previously, we reported that mutations in THSD1 , encoding thrombospondin type-1 domain-containing protein 1, are associated with IA in a subset of patients. THSD1 is a transmembrane molecule with a thrombospondin type-1 repeat (TSR). Proteins with TSR domain have been implicated in a variety of processes including regulation of matrix organization, cell adhesion and migration. We have shown that in mouse brain Thsd1 is expressed in endothelial cells. Hypothesis: THSD1 plays an important role in maintaining the integrity of the endothelium by promoting adhesion of endothelial cells to the underlying basement membrane. Methods: Human umbilical vein endothelial cells are used to investigate the role of THSD1 in vitro . THSD1 expression was knocked-down by RNA interference. Cell adhesion assay was done on collagen I-coated plates and focal adhesion formation was visualized using immunofluorescence by paxillin and phosphorylated focal adhesion kinase (pFAK) staining. THSD1 re-expression is accomplished by transfection with a pCR3.1-THSD1-encoding plasmid. Results: Knockdown of THSD1 caused striking change in cell morphology and size. Compared to control siRNA-treated cells that exhibited typical cobblestone morphology, THSD1 knockdown cells were narrow and elongated, and were significantly smaller ( p <0.01). Cell adherence to collagen I-coated plates was also attenuated in THSD1 knockdown cells ( p <0.01). Consistent with this finding is the observation that the number and size of focal adhesions, based on paxillin and pFAK staining, were significantly reduced after THSD1 knockdown ( p <0.01). These defects in cell adhesion and focal adhesion formation were rescued by re-expression of wild type THSD1 ( p <0.05). In contrast, initial studies indicate that expression of mutated versions of THSD1 as seen in human patients (L5F, R450*, E466G, P639L) could not restore cell adhesion and focal adhesion formation to wild type levels. Conclusions: Our studies provide evidence for a role of THSD1 and THSD1 mutations in endothelial cell adhesion and suggest a possible mechanism underlying THSD1 -mediated aneurysm disease.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jie Liu ◽  
Yanmei Qi ◽  
Shu-Chan Hsu ◽  
Siavash Saadat ◽  
Saum Rahimi ◽  
...  

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a 24 kD glycoprotein essential for early embryonic development. Our immunofluorescence studies revealed that CREG1 is highly expressed at myocyte junctions in both embryonic and adult hearts. To explore it role in cardiomyogenesis, we employed gain- and loss-of-function analyses demonstrating that CREG1 is required for the differentiation of mouse embryonic stem (ES) cell into cohesive myocardium-like structures. Chimeric cultures of wild-type and CREG1 knockout ES cells expressing cardiac-specific reporters showed that the cardiomyogenic effect of CREG1 is cell autonomous. Furthermore, we identified a novel interaction between CREG1 and Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Mutations of the amino acid residues D141 and P142 to alanine in CREG1 abolished its binding to Sec8. To address the role of the CREG1-Sec8 interaction in cardiomyogenesis, we rescued CREG1 knockout ES cells with wild-type and Sec8-binding mutant CREG1 and showed that CREG1 binding to Sec8 promotes cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8 and N-cadherin all localize at cell-cell adhesion sites. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. Finally, shRNA-mediated knockdown of Sec8 leads to cardiomyogenic defects similar to CREG1 knockout. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis.


2007 ◽  
Vol 90 (5) ◽  
pp. 1450-1455 ◽  
Author(s):  
Dimuth Siritunga ◽  
Richard Sayre

Abstract For cassava to become a safe and acceptable crop, it is necessary to reduce the cyanogen levels in cassava foods. While this objective can be achieved by processing procedures, recent findings have shown that it is also possible to achieve it by suppression of cyanogen synthesis or by accelerating cyanogen turnover and volatilization. In 2003, cyanogen-free cultivars were generated by selective inhibition CYP79D1/D2 gene expression. The CYP79D1/D2 enzymes catalyze the first-dedicated step in cyanogen synthesis. Tissue-specific inhibition of CYP79D1/D2 expression in leaves lead to a 99 reduction in root cyanogen levels, indicating that the cyanogenic glycoside, linamarin, is synthesized in leaves and transported to roots. An alternative strategy to the reduce cyanogen content is to enhance cyanogen detoxification and cyanide volatilization during processing. This strategy has the advantage that cyanogen levels in unprocessed roots are not altered, potentially providing protection against herbivory and/or theft. To produce cultivars that promote rapid cyanide volatilization, hydroxynitrile lyase (HNL), which catalyzes the last step in cyanogenesis, was overexpressed in roots. Elevated HNL activity resulted in a 3-fold increase in the rate of cyanogen turnover. Importantly, the cyanogen content of the transformed and wild-type plants was identical, a potential benefit for farmers.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
X.-J Du ◽  
W B Zhao ◽  
Q Lu ◽  
M N Nguyen ◽  
M Ziemann ◽  
...  

Abstract Background Galectin-3 (Gal-3) is a clinical biomarker for risk of cardiovascular disease and a disease mediator forming a therapeutic target. However, the mechanism(s) that regulate cardiac expression of Gal-3 remains unknown. Activation of the sympatho-β-adrenergic system is a hallmark of heart disease, but the relationship of βAR activation and cardiac content of Gal-3 remains unknown. Purpose To determine the role of βAR activation in regulating cardiac Gal-3 level and the responsible mechanism focusing on the Hippo signalling pathway. Methods Wild-type and Gal-3 gene deleted (Gal3-KO) mice were used. To test the role of the Hippo pathway, we used transgenic (TG) mouse strains with cardiac overexpression of mammalian-20-like sterile kinase 1 (Mst1, mammalian orthology of Drosophila Hippo kinase) either in wild-type form (TG-Mst1) or dominative-negative kinase dead mutant form (TG-dnMst1). Effects of β-antagonist (isoprenaline, ISO) and antagonists were determined. We measured phosphorylation (Ser127) of YAP as a transcription co-regulator acting as the main signal output of the Hippo pathway. Results In wild-type mice, treatment with ISO led to a time- and dose-dependent increase in cardiac expression of Gal-3 (Fig. A) accompanied by elevated circulating Gal-3 levels (Fig. B). ISO treatment stimulated cardiac expression of Mst1 and YAP hyper-phosphorylation (i.e. inactivation, Fig. C), indicating activation of the Hippo signalling. These effects of ISO were inhibited by β-blockers (propranolol, Prop; carvedilol, Carv; Fig. D,E). Relative to non-TG controls, ISO-induced expression of Gal-3 was inhibited by 75% in TG-dnMst1 mice (inactivated Mst1), but exaggerated by 7-fold in TG-Mst1 mice (activated Mst1). Mst1-TG mice had a 45-fold increase in Gal-3 content, YAP hyper-phosphorylation and enhanced pro-fibrotic signaling. In Mst1-TG mice, whilst blood Gal-3 level was unchanged, treatment with ISO (6 mg, 2 days) evoked a marked increase in cardiac and blood Gal-3 levels. Using rat cardiomyoblasts, we showed that ISO-mediated Mst1 expression and YAP phosphorylation were PKA-dependent and that siRNA-mediated YAP knockdown led to Gal-3 upregulation. The role of Gal-3 in mediating ISO-induced cardiomyopathy was examined by treating wild-type and Gal3-KO mice with ISO (30 mg/kg, 7 days). ISO-treated wild-type mice had 8-fold increase in cardiac Gal-3, ventricular dysfunction, fibrosis, hypertrophy and activated inflammatory or fibrotic signalling. All these changes, except hypertrophy, were abolished by Gal3-KO. beta-AR regulates galectin-3 Conclusion βAR stimulation increases cardiac expression of Gal-3 through activation of the Hippo signalling pathway. This is accompanied by elevated circulating Gal-3 level. βAR antagonists inhibited βAR-Mst1 (Hippo) signalling and cardiac Gal-3 expression, actions likely contributing to the overall efficacy of β-blockers. Acknowledgement/Funding NHMRC of Australia; Nature Science Fund of China


2000 ◽  
Vol 278 (1) ◽  
pp. L75-L80 ◽  
Author(s):  
Machiko Ikegami ◽  
Jeffrey A. Whitsett ◽  
Zissis C. Chroneos ◽  
Gary F. Ross ◽  
Jacquelyn A. Reed ◽  
...  

Mice that express interleukin (IL)-4 in Clara cells (CCSP-IL-4) develop chronic airway inflammation and an alveolar proteinosis-like syndrome. To identify the role of IL-4 in surfactant homeostasis, we measured lipid and protein metabolism in the lungs of CCSP-IL-4 mice in vivo. Alveolar saturated phosphatidylcholine (Sat PC) pools were increased 6.5-fold and lung tissue Sat PC pools were increased 4.8-fold in the IL-4 transgenic mice. Whereas surfactant protein (SP) A was increased proportionately to Sat PC, SP-D was increased approximately 90-fold in the IL-4 mice compared with wild-type mice and was associated with 2.8-fold increase in SP-D mRNA. The incorporation of palmitate and choline into Sat PC was increased about twofold in CCSP-IL-4 mice. Although trace doses of radiolabeled Sat PC were cleared from the air spaces and lungs of CCSP-IL-4 mice more slowly than in wild-type mice, net clearance of Sat PC from the lungs of CCSP-IL-4 mice was sixfold higher in the IL-4 mice than in wild-type mice because of the larger Sat PC pool sizes. Expression of IL-4 in Clara cells increased surfactant lipid synthesis and clearance, establishing a new equilibrium with increased surfactant pools and an alveolar proteinosis associated with a selective increase in SP-D protein, demonstrating a previously unexpected effect of IL-4 in pulmonary surfactant homeostasis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 902-902 ◽  
Author(s):  
Dhananjay K. Kaul ◽  
Sandra M. Suzuka ◽  
Mary Fabry

Abstract Abstract 902 Multiple adhesion molecules, expressed on sickle red blood cells (SS RBCs) and activated endothelium, have been implicated in SS RBC adhesion to vascular endothelium. Moreover, intrinsic differences among heterogeneous SS RBC subpopulations, involving differences in red cell adhesion molecules and cell deformability, may contribute to their adhesive and obstructive properties and lead to postcapillary obstruction. However, the role of SS RBCs in endothelium activation and adhesion has not been evaluated despite the insightful studies of Hebbel and coworkers (JCI, 1982) demonstrating that SS RBCs generate excessive amounts of reactive oxygen species due to the presence of unstable hemoglobin S (HbS) and autoxidation of iron in heme. RBCs from transgenic-knockout sickle (BERK) mice similarly show a pronounced increase in heme degradation (Nagababu et. al. Blood Cells Mol Dis, 2008). We hypothesize that hypoxic conditions in venules (oxygen tension,∼30 mm Hg) will accelerate autoxidation of RBC membrane-bound HbS and release H2O2 that will be transferred to adjoining endothelium resulting in its activation (i.e., up-regulation of endothelial adhesion molecules) and SS RBC adhesion. To test the hypothesis that HbS-containing red cells from BERK mice will result in activation of quiescent endothelium in normal mice, we infused FITC (fluorescein isothiocynate)-labeled BERK red cells into congenic C57BL mice. BERK mice, expressing exclusively human βS- and α-globins, have been extensively backcrossed onto C57BL background. Intravital observations were made in the cremaster muscle microcirculatory bed. A single bolus of 150 μl of FITC-labeled BERK RBCs (Hct 30%) was infused into the recipient C57BL mouse via the jugular vein over a period of 5 min to avoid any shear related platelet aggregation. Infusion of FITC-labeled control (C57BL) mouse RBCs into C57BL recipient mice resulted in rare or no RBC adhesion, suggesting that there was no activating effect on endothelium. In contrast, infusion of BERK mouse RBCs into C57BL mice resulted in time-dependent increase in adhesion to venular endothelium. Adhesion became discernable after 3 minutes and showed a 3-5 fold increase after 5-min compared with the number of adherent RBCs at 3 min (P<0.01). Next, we investigated if the infusion of BERK mouse RBCs would induce increased endothelial oxidants. To this end, the cremaster preparation was suffused for 15 min with 123 dihydrorhodamine (DHR), a H2O2-sensitive probe (10 μl/L), followed by a bolus infusion of BERK mouse RBCs, and time-dependent changes in DHR fluorescence intensity were monitored in venules, the sites of adhesion. Infusion of BERK mouse RBCs, but not C57BL RBCs, resulted in time-dependent increase in the fluorescence intensity (ΔI) in venular endothelium, with almost 5-fold increase in DHR intensity after 5 min of BERK RBC infusion (P<0.001) compared with ΔI at 1 min. When infusion of catalase (900 U/mouse) into recipient C57BL mice was followed 30 min later by a bolus of FITC-labeled BERK mouse RBCs, BERK RBC adhesion and pronounced DHR fluorescence in endothelium were observed, demonstrating that intravascular infusion of catalase had little effect on oxidant generation by BERK mouse RBCs. In contrast, infusion of BERK RBCs pre-treated with catalase (100 U in 0.2 ml RBC suspension, 9-fold less catalase per mouse) to quench RBC generated H2O2 inhibited endothelial DHR fluorescence and BERK RBC adhesion. These results strongly suggest an obligatory role of heme-mediated peroxide generation by SS RBC in endothelial activation and SS RBC adhesion, and support the notion that heme-mediated oxidant generation may play a vital role in endothelial dysfunction in sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 398-398
Author(s):  
Yuya Kunisaki ◽  
Christoph Scheiermann ◽  
Daniel Lucas ◽  
Andrew Chow ◽  
Paul S. Frenette

Abstract Abstract 398 Previous studies have revealed that hematopoietic stem cells (HSCs) are released into peripheral blood in a circadian manner in a process controlled by the sympathetic nervous system (SNS) through the regulation of CXCL12 levels in the bone marrow (BM) (Mendez-Ferrer et. al. Nature 2008;452:442). Here, we have evaluated the constitutive recruitment of hematopoietic cells back to the BM. We have observed using high-speed multichannel fluorescence intravital microscopy (MFIM) significant circadian oscillations in the number of adherent BM cells in sinusoids with a nadir in the morning (Zeitgeber time, ZT5: 0.97 ± 0.17 adherent cells/ 100 μm2 vessel area) and a peak at night (ZT13: 2.54 ± 0.53 adherent cells/100 μm2, p = 0.007) after adoptive transfer on a 12 hour light-12 hour darkness cycle. Flow cytometric analyses revealed that the majority (∼70 %) of homed BM cells were Gr-1+ Mac-1+ myeloid cells. To investigate the underlying mechanisms, we have examined the expression levels of P- and E-selectins and VCAM-1, essential homing receptors for progenitor cells in the BM, and found that their mRNA and protein expression on BM endothelium oscillated over the course of a day with the peak expression overlapping the time of the highest cell adhesion numbers (ZT13). To examine the role of the SNS in this process, we surgically sympathectomized mice by unilateral section of the superior cervical ganglion (SCGx) whose neurons project into the calvarial vasculature, while performing sham surgery on the contralateral side. Sympathectomy abolished circadian fluctuations in the number of adoptively transferred adherent cells to the denervated calvarial BM compared to the control side in the same animals (nerve-intact side: ZT5 / ZT13: 1.66 ± 0.10 / 2.41 ± 0.08 cells / 100 μm2, p<0.0001; SCGx: ZT5 / ZT13: 1.65 ± 0.09 vs 1.63 ± 0.09 / 100 μm2 vessel area, p=0.90). We then ascertained further the role of adrenergic signals by evaluating mice deficient in b-adrenergic receptors. We found that the oscillations in cell adhesion molecule expression were markedly reduced in β2 (Adrb2-/-) and β3 (Adrb3-/-) adrenergic receptor deficient mice. These results suggest that hematopoietic cell recruitment to the BM is under circadian control, which is dependent on oscillating expression of endothelial selectins and VCAM-1, and regulated by the SNS. To test the relevance of circadian leukocyte recruitment, we investigated whether isoproterenol, a pan-b-adrenergic agonist commonly used in the clinic, could promote hematopoietic progenitor recruitment and thus BM reconstitution after BM transplantation (BMT). Treatment with isoproterenol (5 mg/kg) for 5 days significantly up-regulated expression of P-selectin (1.2-fold increase; p = 0.027), E-selectin (1.5-fold increase; P = 0.003) and VCAM-1 (2.3-fold increase; P=0.006) on BM endothelium in irradiated recipients as determined by flow cytometry of Tie-2+ PECAM-1+ endothelial cells. Consequently, homing of BM cells was dramatically increased (control / isoproterenol: 2.4 ± 0.2 ×104/4.9 ± 0.4 × 104 donor cells/femur; p = 0.0002) as was the number of recruited hematopoietic progenitors (17.0 ± 3.5/74.1 ± 18.8 CFU-C/femur; p = 0.017). In addition, the recovery of mature myeloid cells in peripheral blood was significantly accelerated in 3 weeks after transplantation of 5 × 104 BM cells (0.38 ± 0.21 × 103/1.64 ± 0.50 ×103/μl; p = 0.024). Of importance, using limiting numbers of BM cells (2.5 × 104) for transplantation, isoproterenol treatment markedly improved the survival (median survival time 10 vs 18 days, percent survival at 4 weeks post-BMT 5.8 vs 35.2%; p = 0.0097). These results indicate that the circadian timing of donor cell infusion and/or manipulation of adrenergic signals in the BM microenvironment may improve transplantation outcome through enhanced engraftment efficiency. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3257-3257
Author(s):  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Karin M. Hoffmeister

Abstract Abstract 3257 The regulatory mechanisms of platelet homeostasis remain elusive. We investigated here the role of hepatic asialoglycoprotein receptor (a.k.a. Ashwell-Morell receptor) in platelet clearance. Mice lacking the hepatic asialoglycoprotein receptor Asgpr2 subunit had increased platelet survivals (T1/2 = 49.5±2h) when compared to wild type (WT, T1/2 = 31±4h) mice. Consequently, Asgpr2−/− mice had platelet counts increased by ∼20%, compared to WT, with increased terminal galactose exposure, as demonstrated using the galactose specific lectin RCA1. Bone marrow and spleen megakaryocyte numbers were reduced by ∼15% and ∼20% in Asgpr2−/− mice, compared to WT mice. Sialidase (NA, Clostidium perfringens, 50mU/mice) maximally desialylated circulating platelets when injected intravenously, as evidenced by increased RCA1 binding. Sialidase injection resulted in a ∼60% depletion of circulating platelets after 24h in Asgpr2−/− mice, compared to >90% in WT mice, indicating that desialylated platelets were partially removed by Asgpr1/2. In contrast to platelets, red blood cell counts were unaffected by sialidase treatment. Sialidase injection for 72h resulted in a 2.3-fold and 1.2-fold increase in megakaryocyte numbers in the spleen and bone marrow of WT mice, respectively, but not in Asgpr2−/− mice. In contrast to sialidase treatment, injections of rabbit anti-mouse platelet serum (RAMPS) depleted >95% of circulating platelets and increased by 70% bone marrow, but not spleen MK numbers in both WT and Asgpr2−/− mice. The data shows that removal of desialylated, i.e, senescent, platelets by the hepatic Ashwell-Morell receptor differs to that of antibody-mediated platelet clearance. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 199 (24) ◽  
Author(s):  
Luke A. Fenlon ◽  
James M. Slauch

ABSTRACT Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S. Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment inside host immune cells, a location in which most bacteria are killed. Our work examines how one particular metal, copper, is acquired by Salmonella to activate a protein important for survival within immune cells. At high levels, copper itself can inhibit Salmonella. Using a strain of Salmonella that cannot detoxify intracellular copper, we also addressed the in vivo role of copper as an antimicrobial agent.


Endocrinology ◽  
2013 ◽  
Vol 154 (7) ◽  
pp. 2393-2398 ◽  
Author(s):  
Jose Córdoba-Chacón ◽  
Manuel D. Gahete ◽  
Ana I. Pozo-Salas ◽  
Justo P. Castaño ◽  
Rhonda D. Kineman ◽  
...  

Abstract l-arginine (l-Arg) rapidly stimulates GH and insulin release in vivo. It has been hypothesized that l-Arg stimulates GH release by lowering hypothalamic somatostatin (SST) tone. l-Arg may also act directly at the pituitary to stimulate GH release. Moreover, l-Arg has a direct stimulatory effect on β-cells, which is thought to be blunted by the release of SST from pancreatic δ-cells. To confirm the role of endogenous SST on l-Arg-induced GH and insulin release, wild-type (WT) and SST-knockout (SST-KO) mice were injected with l-Arg (ip; 0.8 g/kg), and pre-/post-injection GH, insulin, and glucose levels were measured. In WT mice, l-Arg evoked a 6-fold increase in circulating GH. However, there was only a modest increase in GH levels in WT pituitary cell cultures treated with l-Arg. In contrast, l-Arg failed to increase GH in SST-KO beyond their already elevated levels. These results further support the hypothesis that the primary mechanism by which l-Arg acutely increases GH in vivo is by lowering hypothalamic SST input to the pituitary and not via direct pituitary effects. Additionally, l-Arg induced a clear first-phase insulin secretion in WT mice, but not in SST-KO. However, SST-KO, but not WT mice, displayed a robust and sustained second-phase insulin release. These results further support a role for endogenous SST in regulating l-Arg-mediated insulin release.


Sign in / Sign up

Export Citation Format

Share Document