scholarly journals Electrostatic interactions play a minor role in the binding of ExoS to 14-3-3 proteins

2010 ◽  
Vol 427 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Lubna Yasmin ◽  
Jeffrey L. Veesenmeyer ◽  
Maureen H. Diaz ◽  
Matthew S. Francis ◽  
Christian Ottmann ◽  
...  

14-3-3 proteins belong to a family of conserved molecules expressed in all eukaryotic cells that play an important role in a multitude of signalling pathways. 14-3-3 proteins bind either to phosphoserine/phosphothreonine residues or to sequence-specific non-phosphorylated motifs in more than 200 interaction partners [Pozuelo Rubio, Geraghty, Wong, Wood, Campbell, Morrice and Mackintosh (2004) Biochem. J. 379, 395–408]. These interactions result in cell-cycle regulation, apoptosis, stress responses, cell metabolism and malignant transformation. One example of a phosphorylation-independent interaction is the binding of 14-3-3 to ExoS (exoenzyme S), a bacterial ADP-ribosyltransferase toxin of Pseudomonas aeruginosa. In the present study, we have utilized additional biochemical and infection analyses to define further the structural basis of the interaction between ExoS and 14-3-3. An ExoS leucine-substitution mutant dramatically reduced the interaction potential with 14-3-3 suggesting that Leu422, Leu423, Leu426 and Leu428 of ExoS are important for its interaction with 14-3-3, its enzymatic activity and cytotoxicity. However, ExoS substitution mutants of residues that interact with 14-3-3 through an electrostatic interaction, such as Ser416, His418, Asp424 and Asp427, showed no reduction in their interaction potential with 14-3-3. These ExoS substitution mutants were also as aggressive as wild-type ExoS at inducing cell death and to modify endogenous ExoS target within the cell. In conclusion, electrostatic interaction between ExoS and 14-3-3 via polar residues (Ser416, His418, Asp424 and Asp427) appears to be of secondary importance. Thus the interaction between the ‘roof’ of the groove of 14-3-3 and ExoS relies more on hydrophobic interaction forces, which probably contributes to induce cell death after ExoS infection and activation.

Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1461-1468 ◽  
Author(s):  
Paul G. Ekert ◽  
Anissa M. Jabbour ◽  
Anand Manoharan ◽  
Jacki E. Heraud ◽  
Jai Yu ◽  
...  

Growth and survival of hematopoietic cells is regulated by growth factors and cytokines, such as interleukin 3 (IL-3). When cytokine is removed, cells dependent on IL-3 kill themselves by a mechanism that is inhibited by overexpression of Bcl-2 and is likely to be mediated by proapoptotic Bcl-2 family members. Bad and Bim are 2 such BH3-only Bcl-2 family members that have been implicated as key initiators in apoptosis following growth factor withdrawal, particularly in IL-3-dependent cells. To test the role of Bad, Bim, and other proapoptotic Bcl-2 family members in IL-3 withdrawal-induced apoptosis, we generated IL-3-dependent cell lines from mice lacking the genes for Bad, Bim, Puma, both Bad and Bim, and both Bax and Bak. Surprisingly, Bad was not required for cell death following IL-3 withdrawal, suggesting changes to phosphorylation of Bad play only a minor role in apoptosis in this system. Deletion of Bim also had no effect, but cells lacking Puma survived and formed colonies when IL-3 was restored. Inhibition of the PI3 kinase pathway promoted apoptosis in the presence or absence of IL-3 and did not require Bad, Bim, or Puma, suggesting IL-3 receptor survival signals and PI3 kinase survival signals are independent.


2002 ◽  
Vol 51 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Runar Almaas ◽  
Ola Didrik Saugstad ◽  
David Pleasure ◽  
Terje Rootwelt

2013 ◽  
Vol 453 (3) ◽  
pp. 381-391 ◽  
Author(s):  
MengJie Hu ◽  
Simon A. Crawford ◽  
Darren C. Henstridge ◽  
Ivan H. W. Ng ◽  
Esther J. H. Boey ◽  
...  

p32 [also known as HABP1 (hyaluronan-binding protein 1), gC1qR (receptor for globular head domains complement 1q) or C1qbp (complement 1q-binding protein)] has been shown previously to have both mitochondrial and non-mitochondrial localization and functions. In the present study, we show for the first time that endogenous p32 protein is a mitochondrial protein in HeLa cells under control and stress conditions. In defining the impact of altering p32 levels in these cells, we demonstrate that the overexpression of p32 increased mitochondrial fibrils. Conversely, siRNA-mediated p32 knockdown enhanced mitochondrial fragmentation accompanied by a loss of detectable levels of the mitochondrial fusion mediator proteins Mfn (mitofusin) 1 and Mfn2. More detailed ultrastructure analysis by transmission electron microscopy revealed aberrant mitochondrial structures with less and/or fragmented cristae and reduced mitochondrial matrix density as well as more punctate ER (endoplasmic reticulum) with noticeable dissociation of their ribosomes. The analysis of mitochondrial bioenergetics showed significantly reduced capacities in basal respiration and oxidative ATP turnover following p32 depletion. Furthermore, siRNA-mediated p32 knockdown resulted in differential stress-dependent effects on cell death, with enhanced cell death observed in the presence of hyperosmotic stress or cisplatin treatment, but decreased cell death in the presence of arsenite. Taken together, our studies highlight the critical contributions of the p32 protein to the morphology of mitochondria and ER under normal cellular conditions, as well as important roles of the p32 protein in cellular metabolism and various stress responses.


1998 ◽  
Vol 95 (23) ◽  
pp. 13818-13822 ◽  
Author(s):  
J. Allison ◽  
A. Strasser
Keyword(s):  

2000 ◽  
Vol 20 (9) ◽  
pp. 1294-1300 ◽  
Author(s):  
Bing R. Hu ◽  
Chun Li Liu ◽  
Yibing Ouyang ◽  
Klas Blomgren ◽  
Bo K. Siesjö

The involvement of caspase-3 in cell death after hypoxia–ischemia (HI) was studied during brain maturation. Unilateral HI was produced in rats at postnatal day 7 (P7), 15 (P15), 26 (P26), and 60 (P60) by a combination of left carotid artery ligation and systemic hypoxia (8% O2). Activation of caspase-3 and cell death was examined in situ by high-resolution confocal microscopy with anti-active caspase-3 antibody and propidium iodide and by biochemical analysis. The active caspase-3 positive neurons were composed of more than 90% HI damaged striatal and neocortical neurons in P7 pups, but that number was reduced to approximately 65% in striatum and 34% in the neocortex of P15 pups, and approximately 26% in striatum and 2% in neocortex of P26 rats. In P60 rats, less than 4% of the damaged neurons in striatum and less than 1% in neocortex were positive for active caspase-3. Western blot analysis demonstrated that the level of inactive caspase-3 in normal forebrain tissue gradually declined from a high level in young pups to very low levels in adult rats. Concomitantly, HI-induced active caspase-3 was reduced from a relatively high level in P7, to moderate levels in P15 and P26, to a barely detectable level in P60 rats. The authors conclude that the involvement of caspase-3 in the pathogenesis of cell death after HI declines during neuronal maturation. The authors hypothesize that caspase-3 may play a major role in cell death in immature neurons but a minor role in cell death in mature neurons after brain injury.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuta Nakajima ◽  
Laura Pedraza-González ◽  
Leonardo Barneschi ◽  
Keiichi Inoue ◽  
Massimo Olivucci ◽  
...  

AbstractColor tuning in animal and microbial rhodopsins has attracted the interest of many researchers, as the color of their common retinal chromophores is modulated by the amino acid residues forming the chromophore cavity. Critical cavity amino acid residues are often called “color switches”, as the rhodopsin color is effectively tuned through their substitution. Well-known color switches are the L/Q and A/TS switches located in the C and G helices of the microbial rhodopsin structure respectively. Recently, we reported on a third G/P switch located in the F helix of the light-driven sodium pumps of KR2 and JsNaR causing substantial spectral red-shifts in the latter with respect to the former. In order to investigate the molecular-level mechanism driving such switching function, here we present an exhaustive mutation, spectroscopic and computational investigation of the P219X mutant set of KR2. To do so, we study the changes in the absorption band of the 19 possible mutants and construct, semi-automatically, the corresponding hybrid quantum mechanics/molecular mechanics models. We found that the P219X feature a red-shifted light absorption with the only exception of P219R. The analysis of the corresponding models indicate that the G/P switch induces red-shifting variations via electrostatic interactions, while replacement-induced chromophore geometrical (steric) distortions play a minor role. However, the same analysis indicates that the P219R blue-shifted variant has a more complex origin involving both electrostatic and steric changes accompanied by protonation state and hydrogen bond networks modifications. These results make it difficult to extract simple rules or formulate theories for predicting how a switch operates without considering the atomistic details and environmental consequences of the side chain replacement.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Yee-Seul So ◽  
Shinae Maeng ◽  
Dong-Hoon Yang ◽  
Hyelim Kim ◽  
Kyung-Tae Lee ◽  
...  

ABSTRACT AP-1-like transcription factors play evolutionarily conserved roles as redox sensors in eukaryotic oxidative stress responses. In this study, we aimed to elucidate the regulatory mechanism of an atypical yeast AP-1-like protein, Yap1, in the stress response and virulence of Cryptococcus neoformans. YAP1 expression was induced and involved not only by oxidative stresses, such as H2O2 and diamide, but also by other environmental stresses, such as osmotic and membrane-destabilizing stresses. Yap1 was distributed throughout both the cytoplasm and the nucleus under basal conditions and more enriched within the nucleus in response to diamide but not to other stresses. Deletion of the C-terminal cysteine-rich domain (c-CRD), where the nuclear export signal resides, increased nuclear enrichment of Yap1 under basal conditions and altered resistance to oxidative stresses but did not affect the role of Yap1 in other stress responses and cellular functions. As a potential upstream regulator of Yap1, we discovered that Mpk1 is positively involved, but Hog1 is mostly dispensable. Pleiotropic roles for Yap1 in diverse biological processes were supported by transcriptome data showing that 162 genes are differentially regulated by Yap1, with further analysis revealing that Yap1 promotes cellular resistance to toxic cellular metabolites produced during glycolysis, such as methylglyoxal. Finally, we demonstrated that Yap1 plays a minor role in the survival of C. neoformans within hosts. IMPORTANCE The human meningitis fungal pathogen, Cryptococcus neoformans, contains the atypical yeast AP-1-like protein Yap1. Yap1 lacks an N-terminal cysteine-rich domain (n-CRD), which is present in other fungal Yap1 orthologs, but has a C-terminal cysteine-rich domain (c-CRD). However, the role of c-CRD and its regulatory mechanism remain unknown. Here, we report that Yap1 is transcriptionally regulated in response to oxidative, osmotic, and membrane-destabilizing stresses partly in an Mpk1-dependent manner, supporting its role in stress resistance. The c-CRD domain contributed to the role of Yap1 only in resistance to certain oxidative stresses and azole drugs but not in other cellular functions. Yap1 has a minor role in the survival of C. neoformans in a murine model of systemic cryptococcosis.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


1958 ◽  
Vol 02 (05/06) ◽  
pp. 462-480 ◽  
Author(s):  
Marc Verstraete ◽  
Patricia A. Clark ◽  
Irving S. Wright

SummaryAn analysis of the results of prothrombin time tests with different types of thromboplastins sheds some light on the problem why the administration of coumarin is difficult to standardize in different centers. Our present ideas on the subject, based on experimental data may be summarized as follows.Several factors of the clotting mechanism are influenced by coumarin derivatives. The action of some of these factors is by-passed in the 1-stage prothrombin time test. The decrease of the prothrombin and factor VII levels may be evaluated in the 1-stage prothrombin time determination (Quick-test). The prolongation of the prothrombin times are, however, predominantly due to the decrease of factor VII activity, the prothrombin content remaining around 50 per cent of normal during an adequate anticoagulant therapy. It is unlikely that this degree of depression of prothrombin is of major significance in interfering with the coagulation mechanism in the protection against thromboembolism. It may, however, play a minor role, which has yet to be evaluated quantitatively. An exact evaluation of factor VII is, therefore, important for the guidance of anticoagulant therapy and the method of choice is the one which is most sensitive to changes in factor VII concentration. The 1-stage prothrombin time test with a rabbit lung thromboplastin seems the most suitable method because rabbit brain preparations exhibit a factor VII-like activity that is not present in rabbit lung preparations.


2016 ◽  
Vol 46 (185) ◽  
pp. 621-638 ◽  
Author(s):  
Christian Siefkes

The ‘Fragment on Machines’ from Marx’s Grundrisse is often cited as an argument that the internal forces of capitalism will lead to its doom. But the argument that the progressive reduction of labor must doom capitalism lacks a proper foundation, as a comparison with the ‘Schemes of Reproduction’ given in Capital II shows. The latter, however, aren’t fully convincing either. In reality, more depends on the private consumption of capitalists than either model recognizes. Ultimately, most can be made of the ‘Fragment on Machines’ by reading it not as an exposure of capitalism’s internal contractions, but as a discussion of a possible communist future where labor (or work) will play but a minor role.


Sign in / Sign up

Export Citation Format

Share Document