scholarly journals Involvement of Caspase-3 in Cell Death after Hypoxia–Ischemia Declines during Brain Maturation

2000 ◽  
Vol 20 (9) ◽  
pp. 1294-1300 ◽  
Author(s):  
Bing R. Hu ◽  
Chun Li Liu ◽  
Yibing Ouyang ◽  
Klas Blomgren ◽  
Bo K. Siesjö

The involvement of caspase-3 in cell death after hypoxia–ischemia (HI) was studied during brain maturation. Unilateral HI was produced in rats at postnatal day 7 (P7), 15 (P15), 26 (P26), and 60 (P60) by a combination of left carotid artery ligation and systemic hypoxia (8% O2). Activation of caspase-3 and cell death was examined in situ by high-resolution confocal microscopy with anti-active caspase-3 antibody and propidium iodide and by biochemical analysis. The active caspase-3 positive neurons were composed of more than 90% HI damaged striatal and neocortical neurons in P7 pups, but that number was reduced to approximately 65% in striatum and 34% in the neocortex of P15 pups, and approximately 26% in striatum and 2% in neocortex of P26 rats. In P60 rats, less than 4% of the damaged neurons in striatum and less than 1% in neocortex were positive for active caspase-3. Western blot analysis demonstrated that the level of inactive caspase-3 in normal forebrain tissue gradually declined from a high level in young pups to very low levels in adult rats. Concomitantly, HI-induced active caspase-3 was reduced from a relatively high level in P7, to moderate levels in P15 and P26, to a barely detectable level in P60 rats. The authors conclude that the involvement of caspase-3 in the pathogenesis of cell death after HI declines during neuronal maturation. The authors hypothesize that caspase-3 may play a major role in cell death in immature neurons but a minor role in cell death in mature neurons after brain injury.

2005 ◽  
Vol 25 (7) ◽  
pp. 899-910 ◽  
Author(s):  
Yasuhiko Matsumori ◽  
Shwuhuey M Hong ◽  
Koji Aoyama ◽  
Yang Fan ◽  
Takamasa Kayama ◽  
...  

Apoptosis is implicated in neonatal hypoxic/ischemic (H/I) brain injury among various forms of cell death. Here we investigate whether overexpression of heat shock protein (Hsp) 70, an antiapoptotic protein, protects the neonatal brain from H/I injury and the pathways involved in the protection. Postnatal day 7 (P7) transgenic mice overexpressing rat Hsp70 (Tg) and their wild-type littermates (Wt) underwent unilateral common carotid artery ligation followed by 30 mins exposure to 8% O2. Significant neuroprotection was observed in Tg versus Wt mice on both P12 and P21, correlating with a high level of constitutive but not inducible Hsp70 in the Tg. More prominent injury was observed in Wt and Tg mice on P21, suggesting its continuous evolution after P12. Western blot analysis showed that translocation of cytochrome c, but not the second mitochondria-derived activator of caspase (Smac)/DIABLO and apoptosis-inducing factor (AIF), from mitochondria into cytosol was significantly reduced in Tg 24 h after H/I compared with Wt mice. Coimmunoprecipitation detected more Hsp70 bound to AIF in Tg than Wt mice 24 h after H/I, inversely correlating with the amount of nuclear, but not cytosolic, AIF translocation. Our results suggest that interaction between Hsp70 and AIF might have reduced downstream events leading to cell death, including the reduction of nuclear AIF translocation in the neonatal brains of Hsp70 Tg mice after H/I.


2003 ◽  
Vol 95 (5) ◽  
pp. 2072-2080 ◽  
Author(s):  
John W. Calvert ◽  
Changman Zhou ◽  
Anil Nanda ◽  
John H. Zhang

We have previously demonstrated that a transient exposure to hyperbaric oxygen (HBO) attenuated the neuronal injury after neonatal hypoxia-ischemia. This study was undertaken to determine whether HBO offers this neuroprotection by reducing apoptosis in injured brain tissue. Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 h of hypoxia (8% oxygen). Apoptotic cell death was examined in the injured cortex and hippocampus tissue. Caspase-3 expression and activity increased at 18 and 24 h after the hypoxia-ischemia insult. At 18-48 h, poly(ADP-ribose) polymerase (PARP) cleavage occurred, which reduced the band at 116 kDa and enhanced the band at 85 kDa. There was a time-dependent increase in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive cells. A single HBO treatment (100% oxygen, 3 ATA for 1 h) 1 h after hypoxia reduced the enhanced caspase-3 expression and activity, attenuated the PARP cleavage, and decreased the number of TUNEL-positive cells observed in the cortex and hippocampus. These results suggest that the neuroprotective effect of HBO is at least partially mediated by the reduction of apoptosis.


Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1461-1468 ◽  
Author(s):  
Paul G. Ekert ◽  
Anissa M. Jabbour ◽  
Anand Manoharan ◽  
Jacki E. Heraud ◽  
Jai Yu ◽  
...  

Growth and survival of hematopoietic cells is regulated by growth factors and cytokines, such as interleukin 3 (IL-3). When cytokine is removed, cells dependent on IL-3 kill themselves by a mechanism that is inhibited by overexpression of Bcl-2 and is likely to be mediated by proapoptotic Bcl-2 family members. Bad and Bim are 2 such BH3-only Bcl-2 family members that have been implicated as key initiators in apoptosis following growth factor withdrawal, particularly in IL-3-dependent cells. To test the role of Bad, Bim, and other proapoptotic Bcl-2 family members in IL-3 withdrawal-induced apoptosis, we generated IL-3-dependent cell lines from mice lacking the genes for Bad, Bim, Puma, both Bad and Bim, and both Bax and Bak. Surprisingly, Bad was not required for cell death following IL-3 withdrawal, suggesting changes to phosphorylation of Bad play only a minor role in apoptosis in this system. Deletion of Bim also had no effect, but cells lacking Puma survived and formed colonies when IL-3 was restored. Inhibition of the PI3 kinase pathway promoted apoptosis in the presence or absence of IL-3 and did not require Bad, Bim, or Puma, suggesting IL-3 receptor survival signals and PI3 kinase survival signals are independent.


2014 ◽  
Vol 21 (2) ◽  
pp. 122
Author(s):  
Suryani Hutomo ◽  
Yanti Ivana Suryanto ◽  
Heni Susilowati ◽  
Agustinus Rudolf Phym ◽  
Devi Chretella Maheswara

Kopi adalah minuman yang biasa dikonsumsi oleh masyarakat sehari-hari. Telah diketahui bahwa kopi mengandung kafein seperti yang terdapat juga pada teh dan coklat. Kandungan terbanyak kafein terdapat pada kopi. Kafein mempunyai struktur kimia 1, 3, 7- trimethylxanthine dan merupakan derivat xanthine. Senyawa ini dapat menginduksi kematian sel yang mengarah pada apoptosis, namun mekanisme yang terlibat belum diketahui dengan jelas. Tingginyakonsumsi kopi di dunia yang selalu meningkat mengindikasikan perlunya dilakukan penelitian untuk mengetahui efek kafein pada epitel rongga mulut yang berkontak langsung dengan kafein. Penelitian terdahulu melaporkan bahwaekstrak kopi menyebabkan kerusakan sel yang sebagian besar mengarah pada apoptosis, tetapi mekanismenya belum jelas. Tujuan penelitian ini adalah untuk menganalisis mekanisme kematian sel KB yang diinduksi oleh kafein melaluiaktivasi caspase-3. Sel KB sebagai model epitel oral (5x10⁴ sel) dikultur dalam DMEM menggunakan 24 wells microplate selama 24 jam sebelum perlakuan. Sel selanjutnya dipapar dengan kafein dengan konsentrasi 100 μg/ml, 200 μg/ml, 400 μg/ml dan diinkubasi selama 24 dan 48 jam dalam DMEM. Doxorubicin (0,5625 μg/ml) digunakan sebagai kontrol positif induksi apoptosis. Teknik imunositokimia terhadap caspase-3 dilakukan pada sel setelah dipapar kafeinuntuk mengamati adanya ekspresi caspase-3 sebagai ciri apoptosis. Identifikasi caspase-3 dilakukan menggunakan mikroskop fase kontras. Ekspresi protein caspase-3 terdeteksi pada sitoplasma sel KB. Hasil penelitian ini menunjukkanadanya ekspresi caspase-3 aktif yang ditandai dengan warna cokelat dengan intensitas kuat pada sitoplasma sebagian besar sel setelah dipapar kafein dengan konsentrasi 100 μg/ml dan 200 μg/ml selama 24 jam. Disimpulkan bahwa ekstrak kopi menyebabkan apoptosis sel KB melalui jalur aktivasi caspase-3. ABSTRACT: The Expression of Caspase-3 in Oral Cavity (Kb Cell Line) after Exposure to Coffee Extract. People widely consume coffee in daily meals. It is known there is caffeine found in coffee like it is found in tea and chocolate.Caffeine is found in the greatest amount of coffee. This 1, 3, 7- trimethyl xanthine substance is a derivate of xanthine that is consumed by almost all people in the world. This substance could induce cell death that mainly is apoptosis, but how the mechanism has not been clearly understood. Considering that coffee is widely consumed in the whole world, it is necessary to conduct an experiment to find any possible effect of caffeine to oral epitel that make direct exposure to caffeine. This experiment is targeted to analyze the mechanism of cell death which caused by caffeine through activation of caspase-3. KB cells as oral epithelial model (5x10⁴ sel) were cultured in DMEM using 24 well microplate for 24 hours before treatment. Then caffeine was given with concentration of 100 μg/ml, 200 μg/ml and 400 μg/ml. Cells were then incubated for 24 and 48 hours period in DMEM. Doxorubicin (0,5625 μg/ml) was used as a positive control of apoptosis induction. Immunocytochemistry technique was then done to observe any caspase three expression as amarker for apoptosis. Identification of active caspase-3 was then done using contrast phase microscope. The results showed expression of caspase-3 in KB cells cytoplasm which observed as high intensity of brown colored molecules incell cytoplasm after 100 μg/ml and 200 μg/ml caffeine exposure in 24 hours. It was concluded that coffee extract induce KB cells apoptosis through caspase-3 activation mechanism.


2004 ◽  
Vol 24 (15) ◽  
pp. 6592-6607 ◽  
Author(s):  
Dhyan Chandra ◽  
Grace Choy ◽  
Xiaodi Deng ◽  
Bobby Bhatia ◽  
Peter Daniel ◽  
...  

ABSTRACT It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca2+-dependent mechanism.


2015 ◽  
Vol 37 (4-5) ◽  
pp. 398-406 ◽  
Author(s):  
R. Ann Sheldon ◽  
Raha Sadjadi ◽  
Matthew Lam ◽  
Russell Fitzgerald ◽  
Donna M. Ferriero

We have previously shown that glutathione peroxidase (GPx) overexpressing mice (hGPx-tg) have reduced brain injury after neonatal hypoxia-ischemia (HI) as a consequence of reduced hydrogen peroxide accumulation. However, this protection is reversed with hypoxia preconditioning, raising the question of the roles of the genes regulated by hypoxia-inducible factor-1α (HIF-1α) and their transcription products, such as erythropoietin (EPO), in both the initial protection and subsequent reversal of protection. hGPx-tg and their wild-type (WT) littermates underwent the Vannucci procedure of HI brain injury at postnatal day 9 - left carotid artery ligation followed by exposure to 10% oxygen for 50 min. Brain cortices and hippocampi were subsequently collected 0.5, 4 and 24 h later for the determination of protein expression by Western blot for GPx, HIF-1α, HIF-2α, EPO, EPO receptor, ERK1/2, phospho-ERK1/2, spectrin 145/150 (as a marker of calpain-specific necrotic cell death), and spectrin 120 (as a marker of apoptotic cell death mediated via caspase-3). As expected, the GPx overexpressing mouse cortex had approximately 3 times the GPx expression as WT naïve. Also, GPx expression remained higher in the GPx overexpressing brain than WT at all time points after HI (0.5, 4, 24 h). HIF-1α was not significantly changed in hGPx-tg as a consequence of HI but decreased in the WT cortex 4 h after HI. HIF-2α decreased in the WT hippocampus after HI. EPO was higher in the GPx overexpressing cortex and hippocampus 30 min after HI compared to WT, but the EPO receptor was unchanged by HI. ERK1/2 phosphorylation increased in the hippocampus at 4 h after HI and in the cortex at 24 h after HI in both WT and hGPx-tg. Spectrin 145/150 was increased in the WT cortex at 4 and 24 h after HI, and spectrin 120 increased 24 h after HI, perhaps reflecting greater injury in the WT brain, especially at 24 h when brain injury is more evident. The effect of GPx overexpression does not appear to upregulate the HIF pathway, yet EPO was upregulated, perhaps via ERK. This might explain, in part, why cell death takes a necrotic or apoptotic path. This may also be an explanation for why the GPx overexpressing brain cannot be preconditioned. This information may prove valuable in the development of therapies for neonatal HI brain injury.


2018 ◽  
Vol 5 (6) ◽  
pp. 172103 ◽  
Author(s):  
Kevin R. Brooks ◽  
Colin W. G. Clifford ◽  
Richard J. Stevenson ◽  
Jonathan Mond ◽  
Ian D. Stephen

Prolonged visual exposure, or ‘adaptation’, to thin (wide) bodies causes a perceptual aftereffect such that subsequently seen bodies appear wider (thinner) than they actually are. Here, we conducted two experiments investigating the effect of rotating the orientation of the test stimuli by 90° from that of the adaptor. Aftereffects were maximal when adapting and test bodies had the same orientation. When they differed, the axis of the perceived distortion changed with the orientation of the body. Experiment 1 demonstrated a 58% transfer of the aftereffect across orientations. Experiment 2 demonstrated an even greater degree of aftereffect transfer when the influence of low-level mechanisms was reduced further by using adaptation and test stimuli with different sizes. These results indicate that the body aftereffect is mediated primarily by high-level object-based processes, with low-level retinotopic mechanisms playing only a minor role. The influence of these low-level processes is further reduced when test stimuli differ in size from adaptation stimuli.


2002 ◽  
Vol 51 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Runar Almaas ◽  
Ola Didrik Saugstad ◽  
David Pleasure ◽  
Terje Rootwelt

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Georgios Chondrogiannis ◽  
Michalis Kastamoulas ◽  
Panagiotis Kanavaros ◽  
Georgios Vartholomatos ◽  
Maria Bai ◽  
...  

We analyzed the effects of IL-13, IFN-γ, and IL-1βon cell viability and death of LNCaP and PC-3 cells and major signaling pathways involved in these effects. Significant increase of LNCaP cell death (apoptotic and necrotic) and increased levels of active caspase 3 were observed in cells treated with inhibitors of ERK 1/2 (UO126) and p38 (SB203580) prior to IL-1βtreatment in comparison to cells treated with UO126, SB203580, or IL-1βalone. Significant increase of LNCaP but not PC-3 cell death was detected after treatment with LY-294002 (inhibitor of phosphatidylinositol 3-kinase). No significant increase of LNCaP and PC-3 cell death was observed after treatment with SP600125 (inhibitor of JNK), SB203580 (inhibitor of p38), UO126 (inhibitor of ERK 1/2), or BAY 11-7082 (inhibitor of NF-κB). Reduced c-FLIPLexpression was observed in LNCaP cells treated with LY-294002. The significant potentiation of LNCaP cell death by inhibition of ERK 1/2, p38, and PI3-K pathways may provide a rationale for therapeutic approach in androgen-dependent prostate cancer.


2014 ◽  
Vol 307 (7) ◽  
pp. R879-R887 ◽  
Author(s):  
Naimeh Rafatian ◽  
Katherine V. Westcott ◽  
Roselyn A. White ◽  
Frans H. H. Leenen

After myocardial infarction (post-MI), inflammation and apoptosis contribute to progressive cardiac remodeling and dysfunction. Cardiac mineralocorticoid receptor (MR) and β-adrenergic signaling promote apoptosis and inflammation. Post-MI, MR activation in the brain contributes to sympathetic hyperactivity and an increase in cardiac aldosterone. In the present study, we assessed the time course of macrophage infiltration and apoptosis in the heart as detected by both terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and active caspase-3 immunostaining in both myocytes and nonmyocytes, as well as the effects of central MR blockade by intracerebroventricular infusion of eplerenone at 5 μg/day on peak changes in macrophage infiltration and apoptosis post-MI. Macrophage numbers were markedly increased in the infarct and peri-infarct zones and to a minor extent in the noninfarct part of the left ventricle at 10 days post-MI and decreased over the 3-mo study period. Apoptosis of both myocytes and nonmyocytes was clearly apparent in the infarct and peri-infarct areas at 10 days post-MI. For TUNEL, the increases persisted at 4 and 12 wk, but the number of active caspase-3-positive cells markedly decreased. Central MR blockade significantly decreased CD80-positive proinflammatory M1 macrophages and increased CD163-positive anti-inflammatory M2 macrophages in the infarct. Central MR blockade also reduced apoptosis of myocytes by 40–50% in the peri-infarct and to a lesser extent of nonmyocytes in the peri-infarct and infarct zones. These findings indicate that MR activation in the brain enhances apoptosis both in myocytes and nonmyocytes in the peri-infarct and infarct area post-MI and contributes to the inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document