scholarly journals A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress

2011 ◽  
Vol 441 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Guillem Hueso ◽  
Rafael Aparicio-Sanchis ◽  
Consuelo Montesinos ◽  
Silvia Lorenz ◽  
José R. Murguía ◽  
...  

Intracellular pH conditions many cellular systems, but its mechanisms of regulation and perception are mostly unknown. We have identified two yeast genes important for tolerance to intracellular acidification caused by weak permeable acids. One corresponded to LEU2 and functions by removing the dependency of the leu2 mutant host strain on uptake of extracellular leucine. Leucine transport is inhibited by intracellular acidification, and either leucine oversupplementation or overexpression of the transporter gene BAP2 improved acid growth. Another acid-tolerance gene is GCN2, encoding a protein kinase activated by uncharged tRNAs during amino acid starvation. Gcn2 phosphorylates eIF2α (eukaryotic initiation factor 2α) (Sui2) at Ser51 and this inhibits general translation, but activates that of Gcn4, a transcription factor for amino acid biosynthetic genes. Intracellular acidification activates Gcn2 probably by inhibition of aminoacyl-tRNA synthetases because we observed accumulation of uncharged tRNAleu without leucine depletion. Gcn2 is required for leucine transport and a gcn2-null mutant is sensitive to acid stress if auxotrophic for leucine. Gcn4 is required for neither leucine transport nor acid tolerance, but a S51A sui2 mutant is acid-sensitive. This suggests that Gcn2, by phosphorylating eIF2α, may activate translation of an unknown regulator of amino acid transporters different from Gcn4.

1993 ◽  
Vol 13 (8) ◽  
pp. 5099-5111
Author(s):  
R J Rolfes ◽  
A G Hinnebusch

The transcriptional activator protein GCN4 is responsible for increased transcription of more than 30 different amino acid biosynthetic genes in response to starvation for a single amino acid. This induction depends on increased expression of GCN4 at the translational level. We show that starvation for purines also stimulates GCN4 translation by the same mechanism that operates in amino acid-starved cells, being dependent on short upstream open reading frames in the GCN4 mRNA leader, the phosphorylation site in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha), the protein kinase GCN2, and translational activators of GCN4 encoded by GCN1 and GCN3. Biochemical experiments show that eIF-2 alpha is phosphorylated in response to purine starvation and that this reaction is completely dependent on GCN2. As expected, derepression of GCN4 in purine-starved cells leads to a substantial increase in HIS4 expression, one of the targets of GCN4 transcriptional activation. gcn mutants that are defective for derepression of amino acid biosynthetic enzymes also exhibit sensitivity to inhibitors of purine biosynthesis, suggesting that derepression of GCN4 is required for maximal expression of one or more purine biosynthetic genes under conditions of purine limitation. Analysis of mRNAs produced from the ADE4, ADE5,7, ADE8, and ADE1 genes indicates that GCN4 stimulates the expression of these genes under conditions of histidine starvation, and it appeared that ADE8 mRNA was also derepressed by GCN4 in purine-starved cells. Our results indicate that the general control response is more global than was previously imagined in terms of the type of nutrient starvation that elicits derepression of GCN4 as well as the range of target genes that depend on GCN4 for transcriptional activation.


2016 ◽  
Vol 473 (23) ◽  
pp. 4311-4325 ◽  
Author(s):  
Joana F. Guerreiro ◽  
Alexander Muir ◽  
Subramaniam Ramachandran ◽  
Jeremy Thorner ◽  
Isabel Sá-Correia

Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2–Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2–Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2–Ypk1–sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.


2004 ◽  
Vol 70 (9) ◽  
pp. 5315-5322 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Eric Altermann ◽  
Rebecca L. Hoover-Fitzula ◽  
Raul J. Cano ◽  
Todd R. Klaenhammer

ABSTRACT Amino acid decarboxylation-antiporter reactions are one of the most important systems for maintaining intracellular pH between physiological limits under acid stress. We analyzed the Lactobacillus acidophilus NCFM complete genome sequence and selected four open reading frames with similarities to genes involved with decarboxylation reactions involved in acid tolerance in several microorganisms. Putative genes encoding an ornithine decarboxylase, an amino acid permease, a glutamate γ-aminobutyrate antiporter, and a transcriptional regulator were disrupted by insertional inactivation. The ability of L. acidophilus to survive low-pH conditions, such as those encountered in the stomach or fermented dairy foods, was investigated and compared to the abilities of early- and late-stationary-phase cells of the mutants by challenging them with a variety of acidic conditions. All of the integrants were more sensitive to low pH than the parental strain. Interestingly, each integrant also exhibited an adaptive acid response during logarithmic growth, indicating that multiple mechanisms are present and orchestrated in L. acidophilus in response to acid challenge.


1992 ◽  
Vol 12 (12) ◽  
pp. 5801-5815
Author(s):  
M Ramirez ◽  
R C Wek ◽  
C R Vazquez de Aldana ◽  
B M Jackson ◽  
B Freeman ◽  
...  

The protein kinase GCN2 stimulates expression of the yeast transcriptional activator GCN4 at the translational level by phosphorylating the alpha subunit of translation initiation factor 2 (eIF-2 alpha) in amino acid-starved cells. Phosphorylation of eIF-2 alpha reduces its activity, allowing ribosomes to bypass short open reading frames present in the GCN4 mRNA leader and initiate translation at the GCN4 start codon. We describe here 17 dominant GCN2 mutations that lead to derepression of GCN4 expression in the absence of amino acid starvation. Seven of these GCN2c alleles map in the protein kinase moiety, and two in this group alter the presumed ATP-binding domain, suggesting that ATP binding is a regulated aspect of GCN2 function. Six GCN2c alleles map in a region related to histidyl-tRNA synthetases, and two in this group alter a sequence motif conserved among class II aminoacyl-tRNA synthetases that directly interacts with the acceptor stem of tRNA. These results support the idea that GCN2 kinase function is activated under starvation conditions by binding uncharged tRNA to the domain related to histidyl-tRNA synthetase. The remaining GCN2c alleles map at the extreme C terminus, a domain required for ribosome association of the protein. Representative mutations in each domain were shown to depend on the phosphorylation site in eIF-2 alpha for their effects on GCN4 expression and to increase the level of eIF-2 alpha phosphorylation in the absence of amino acid starvation. Synthetic GCN2c double mutations show greater derepression of GCN4 expression than the parental single mutations, and they have a slow-growth phenotype that we attribute to inhibition of general translation initiation. The phenotypes of the GCN2c alleles are dependent on GCN1 and GCN3, indicating that these two positive regulators of GCN4 expression mediate the inhibitory effects on translation initiation associated with activation of the yeast eIF-2 alpha kinase GCN2.


2020 ◽  
Vol 21 (3) ◽  
pp. 1173 ◽  
Author(s):  
Gaetano Bissoli ◽  
Jesús Muñoz-Bertomeu ◽  
Eduardo Bueso ◽  
Enric Sayas ◽  
Edgardo A. Vilcara ◽  
...  

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not organic acid tolerance. Addition of acetic acid to wild-type plantlets induces production of ROS (Reactive Oxygen Species) measured by dichlorodihydrofluorescein diacetate. Acid-induced ROS production is greatly decreased in sbt4.13-1D and atrboh-D,F mutants. The latter is deficient in two major NADPH oxidases (NOXs) and is tolerant to organic acids. These results suggest that intracellular acidification activates NOXs and the resulting oxidative stress is important for inhibition of growth. The inhibition of acid-activated NOXs in the sbt4.13-1D mutant compensates inhibition of PMA to increase acid tolerance.


1994 ◽  
Vol 14 (4) ◽  
pp. 2331-2342 ◽  
Author(s):  
T G Lee ◽  
N Tang ◽  
S Thompson ◽  
J Miller ◽  
M G Katze

PKR is a serine/threonine protein kinase induced by interferon treatment and activated by double-stranded RNAs. As a result of activation, PKR becomes autophosphorylated and catalyzes phosphorylation of the alpha subunit of protein synthesis eukaryotic initiation factor 2 (eIF-2). While studying the regulation of PKR in virus-infected cells, we found that a cellular 58-kDa protein (P58) was recruited by influenza virus to downregulate PKR and thus avoid the kinase's deleterious effects on viral protein synthesis and replication. We now report on the cloning, sequencing, expression, and structural analysis of the P58 PKR inhibitor, a 504-amino-acid hydrophilic protein. P58, expressed as a histidine fusion protein in Escherichia coli, blocked both the autophosphorylation of PKR and phosphorylation of the alpha subunit of eIF-2. Western blot (immunoblot) analysis showed that P58 is present not only in bovine cells but also in human, monkey, and mouse cells, suggesting the protein is highly conserved. Computer analysis revealed that P58 contains regions of homology to the DnaJ family of proteins and a much lesser degree of similarity to the PKR natural substrate, eIF-2 alpha. Finally, P58 contains nine tandemly arranged 34-amino-acid repeats, demonstrating that the PKR inhibitor is a member of the tetratricopeptide repeat family of proteins, the only member identified thus far with a known biochemical function.


1992 ◽  
Vol 12 (12) ◽  
pp. 5801-5815 ◽  
Author(s):  
M Ramirez ◽  
R C Wek ◽  
C R Vazquez de Aldana ◽  
B M Jackson ◽  
B Freeman ◽  
...  

The protein kinase GCN2 stimulates expression of the yeast transcriptional activator GCN4 at the translational level by phosphorylating the alpha subunit of translation initiation factor 2 (eIF-2 alpha) in amino acid-starved cells. Phosphorylation of eIF-2 alpha reduces its activity, allowing ribosomes to bypass short open reading frames present in the GCN4 mRNA leader and initiate translation at the GCN4 start codon. We describe here 17 dominant GCN2 mutations that lead to derepression of GCN4 expression in the absence of amino acid starvation. Seven of these GCN2c alleles map in the protein kinase moiety, and two in this group alter the presumed ATP-binding domain, suggesting that ATP binding is a regulated aspect of GCN2 function. Six GCN2c alleles map in a region related to histidyl-tRNA synthetases, and two in this group alter a sequence motif conserved among class II aminoacyl-tRNA synthetases that directly interacts with the acceptor stem of tRNA. These results support the idea that GCN2 kinase function is activated under starvation conditions by binding uncharged tRNA to the domain related to histidyl-tRNA synthetase. The remaining GCN2c alleles map at the extreme C terminus, a domain required for ribosome association of the protein. Representative mutations in each domain were shown to depend on the phosphorylation site in eIF-2 alpha for their effects on GCN4 expression and to increase the level of eIF-2 alpha phosphorylation in the absence of amino acid starvation. Synthetic GCN2c double mutations show greater derepression of GCN4 expression than the parental single mutations, and they have a slow-growth phenotype that we attribute to inhibition of general translation initiation. The phenotypes of the GCN2c alleles are dependent on GCN1 and GCN3, indicating that these two positive regulators of GCN4 expression mediate the inhibitory effects on translation initiation associated with activation of the yeast eIF-2 alpha kinase GCN2.


1993 ◽  
Vol 13 (8) ◽  
pp. 5099-5111 ◽  
Author(s):  
R J Rolfes ◽  
A G Hinnebusch

The transcriptional activator protein GCN4 is responsible for increased transcription of more than 30 different amino acid biosynthetic genes in response to starvation for a single amino acid. This induction depends on increased expression of GCN4 at the translational level. We show that starvation for purines also stimulates GCN4 translation by the same mechanism that operates in amino acid-starved cells, being dependent on short upstream open reading frames in the GCN4 mRNA leader, the phosphorylation site in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha), the protein kinase GCN2, and translational activators of GCN4 encoded by GCN1 and GCN3. Biochemical experiments show that eIF-2 alpha is phosphorylated in response to purine starvation and that this reaction is completely dependent on GCN2. As expected, derepression of GCN4 in purine-starved cells leads to a substantial increase in HIS4 expression, one of the targets of GCN4 transcriptional activation. gcn mutants that are defective for derepression of amino acid biosynthetic enzymes also exhibit sensitivity to inhibitors of purine biosynthesis, suggesting that derepression of GCN4 is required for maximal expression of one or more purine biosynthetic genes under conditions of purine limitation. Analysis of mRNAs produced from the ADE4, ADE5,7, ADE8, and ADE1 genes indicates that GCN4 stimulates the expression of these genes under conditions of histidine starvation, and it appeared that ADE8 mRNA was also derepressed by GCN4 in purine-starved cells. Our results indicate that the general control response is more global than was previously imagined in terms of the type of nutrient starvation that elicits derepression of GCN4 as well as the range of target genes that depend on GCN4 for transcriptional activation.


2016 ◽  
Vol 291 (33) ◽  
pp. 17020-17027 ◽  
Author(s):  
Xiaoqing Zhu ◽  
Vivian Dahlmans ◽  
Ramon Thali ◽  
Christian Preisinger ◽  
Benoit Viollet ◽  
...  

AMP-activated protein kinase (AMPK) is a molecular energy sensor that acts to sustain cellular energy balance. Although AMPK is implicated in the regulation of a multitude of ATP-dependent cellular processes, exactly how these processes are controlled by AMPK as well as the identity of AMPK targets and pathways continues to evolve. Here we identify MAP kinase-interacting serine/threonine protein kinase 1a (MNK1a) as a novel AMPK target. Specifically, we show AMPK-dependent Ser353 phosphorylation of the human MNK1a isoform in cell-free and cellular systems. We show that AMPK and MNK1a physically interact and that in vivo MNK1a-Ser353 phosphorylation requires T-loop phosphorylation, in good agreement with a recently proposed structural regulatory model of MNK1a. Our data suggest a physiological role for MNK1a-Ser353 phosphorylation in regulation of the MNK1a kinase, which correlates with increased eIF4E phosphorylation in vitro and in vivo.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 557-565 ◽  
Author(s):  
Yukie Shibata ◽  
Jan R. van der Ploeg ◽  
Takeshi Kozuki ◽  
Yasuhito Shirai ◽  
Naoaki Saito ◽  
...  

C-terminal deletion of the diacylglycerol kinase (Dgk) homologue of the cariogenic oral bacterium Streptococcus mutans resulted in loss of aciduricity. To confirm the role of the C terminus of the Dgk homologue in aciduricity, various mutants of S. mutans UA159 with a C-terminally truncated Dgk homologue were constructed. The deletion of one or two amino acid residues at the C terminus had no effect on the acid-tolerance properties of mutants. When further amino acid residues at the C terminus were removed, mutants became more acid-sensitive. The mutant with deletion of eight amino acid residues at the C terminus did not grow at pH 5.5, suggesting that the C-terminal tail of the Dgk homologue was indispensable for tolerance to acid stress in S. mutans. Kinase activity assays revealed that deletion of the C-terminal amino acids of Dgk led to a reduction of kinase activity for undecaprenol. A truncated mutant that had completely lost kinase activity was unable to grow at pH 5.5. These results suggest that the acid tolerance of S. mutans is closely related to kinase activity of the Dgk homologue. Additionally, the dgk deletion mutant exhibited markedly reduced levels of smooth-surface carious lesions in pathogen-free rats, despite there being no difference between the mutant and the parental organism in the extent of total smooth surface plaque. The results suggest that Dgk activity may play a direct role in the virulence of S. mutans.


Sign in / Sign up

Export Citation Format

Share Document