scholarly journals Vitamin A effects on UMR 106 osteosarcoma cells are not mediated by specific cytosolic receptors

1985 ◽  
Vol 232 (2) ◽  
pp. 599-603 ◽  
Author(s):  
R O Oreffo ◽  
J A Francis ◽  
J T Triffitt

Retinol and retinoic acid at 20 microM altered cell morphology and inhibited cell proliferation of UMR 106 osteosarcoma cells in culture. No specific cytosolic binding proteins for retinol could be detected.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Elena Doldo ◽  
Gaetana Costanza ◽  
Sara Agostinelli ◽  
Chiara Tarquini ◽  
Amedeo Ferlosio ◽  
...  

Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cellsin vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients’ screening for a more personalized and efficacy retinoid therapy.


1996 ◽  
Vol 148 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Y Ninomiya ◽  
Y Arao ◽  
T Kometani ◽  
S Hiwatashi ◽  
T Yamasaki ◽  
...  

Abstract We examined vitamin A-deficient chicks to determine whether vitamin A affects the estrogen-induced development of the chick oviduct. When oviduct development was stimulated for 5 days with the synthetic estrogen, diethylstilbestrol, the wet weight of the oviduct in vitamin A-deficient chicks was only half that in control chicks. The DNA content in this tissue showed that the decreased oviduct weight in the vitamin A-deficient chicks was caused by the decreased proliferation of oviduct cells. However, the estrogen-induced expression of the ovalbumin gene was not affected by the vitamin A deficiency, suggesting that estrogen-induced cytodifferentiation is not affected by vitamin A. To clarify the vitamin A action on estrogen-induced development in the oviduct, transcripts of nuclear estrogen receptor (ER) and all-trans-retinoic acid (RARα, β and γ) receptors, which exert the effects of estrogen and vitamin A, were measured. The ER, RARα and RARβ genes, but not that of RARγ, were expressed during oviduct development, indicating that estrogen and vitamin A may control the expression of target genes through their cognate receptors. Thus, we have shown that vitamin A is involved in estrogen-induced cell proliferation but not in cytodifferentiation of the chicken oviduct. Journal of Endocrinology (1996) 148, 257–265


2007 ◽  
Vol 292 (6) ◽  
pp. G1559-G1569 ◽  
Author(s):  
Lihua Wang ◽  
Yuzhu Tang ◽  
Deborah C. Rubin ◽  
Marc S. Levin

Following the loss of functional small bowel surface area, the intestine undergoes a compensatory adaptive response. The observation that adaptation is inhibited in vitamin A-deficient rats following submassive intestinal resection suggested that vitamin A is required for this response and raised the possibility that exogenous vitamin A could augment adaptation. Therefore, to directly assess whether chronically administered retinoic acid could stimulate gut adaptation in a model of short bowel syndrome and to address the mechanisms of any such effects, Sprague-Dawley rats were implanted with controlled release retinoic acid or control pellets and then subjected to mid-small bowel or sham resections. At 2 wk postoperation, changes in gut morphology, crypt cell proliferation and apoptosis, enterocyte migration, the extracellular matrix, and gene expression were assessed. Retinoic acid had significant trophic effects in resected and sham-resected rats. Retinoic acid markedly inhibited apoptosis and stimulated crypt cell proliferation and enterocyte migration postresection. Data presented indicate that these proadaptive effects of retinoic acid may be mediated via changes in the extracellular matrix (e.g., by increasing collagen IV synthesis, decreasing E-cadherin expression, and reducing integrin β3 levels), via affects on Hedgehog signaling (e.g., by reducing expression of the Hedgehog receptors Ptch and Ptch2 and the Gli1 transcription factor), by increasing expression of Reg1 and Pap1, and by modulation of retinoid and peroxisome proliferator-activated receptor signaling pathways. These studies are the first to demonstrate that retinoic acid can significantly enhance intestinal adaptation and suggest it may be beneficial in patients with short bowel syndrome.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 236
Author(s):  
Lymarie M. Díaz-Díaz ◽  
Natalia Rosario-Meléndez ◽  
Andrea Rodríguez-Villafañe ◽  
Yariel Y. Figueroa-Vega ◽  
Omar A. Pérez-Villafañe ◽  
...  

The increased antibiotics usage in biomedical and agricultural settings has been well documented. Antibiotics have now been shown to exert effects outside their purposive use, including effects on physiological and developmental processes. We explored the effect of various antibiotics on intestinal regeneration in the sea cucumber Holothuria glaberrima. For this, holothurians were eviscerated and left to regenerate for 10 days in seawater with different penicillin/streptomycin-based cocktails (100 µg/mL PS) including: 100 µg/mL kanamycin (KPS), 5 µg/mL vancomycin (VPS), and 4 µg/mL (E4PS) or 20 µg/mL (E20PS) erythromycin. Immunohistological and histochemical analyses were performed to analyze regenerative processes, including rudiment size, extracellular matrix (ECM) remodeling, cell proliferation, and muscle dedifferentiation. A reduction in muscle dedifferentiation was observed in all antibiotic-treated animals. ECM remodeling was decreased by VPS, E4PS, and E20PS treatments. In addition, organisms subjected to E20PS displayed a significant reduction in the size of their regenerating rudiments while VPS exposure altered cell proliferation. MTT assays were used to discard the possibility that the antibiotics directly affect holothurian metabolic activity while bacterial cultures were used to test antibiotic effects on holothurian enteric microbiota. Our results demonstrate a negative effect on intestinal regeneration and strongly suggest that these effects are due to alterations in the microbial community.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1376
Author(s):  
Concettina Cappadone ◽  
Emil Malucelli ◽  
Maddalena Zini ◽  
Giovanna Farruggia ◽  
Giovanna Picone ◽  
...  

Magnesium is an essential nutrient involved in many important processes in living organisms, including protein synthesis, cellular energy production and storage, cell growth and nucleic acid synthesis. In this study, we analysed the effect of magnesium deficiency on the proliferation of SaOS-2 osteosarcoma cells. When quiescent magnesium-starved cells were induced to proliferate by serum addition, the magnesium content was 2–3 times lower in cells maintained in a medium without magnesium compared with cells growing in the presence of the ion. Magnesium depletion inhibited cell cycle progression and caused the inhibition of cell proliferation, which was associated with mTOR hypophosphorylation at Serine 2448. In order to map the intracellular magnesium distribution, an analytical approach using synchrotron-based X-ray techniques was applied. When cell growth was stimulated, magnesium was mainly localized near the plasma membrane in cells maintained in a medium without magnesium. In non-proliferating cells growing in the presence of the ion, high concentration areas inside the cell were observed. These results support the role of magnesium in the control of cell proliferation, suggesting that mTOR may represent an important target for the antiproliferative effect of magnesium. Selective control of magnesium availability could be a useful strategy for inhibiting osteosarcoma cell growth.


1992 ◽  
Vol 20 (2) ◽  
pp. 302-306
Author(s):  
Miroslav Červinka

Recent trends in the field of in vitro toxicology have centred around the validation of in vitro methods. The ultimate goal is to obtain pertinent data with the minimum of effort. In our laboratory, we have used toxicological methods based on the evaluation of cell morphology and cell proliferation. A method suitable for this purpose is time-lapse microcinematographic (or video) recording of cellular changes, which we used for many years. For practical in vitro toxicity testing, however, this method is far too complicated. Therefore, we have tried to develop a simple modification for the evaluation of cell morphology and cell proliferation, which would still allow for a basic time-dependent analysis. Comparison of detailed microcinematographic analysis with analysis according to our new proliferation assay is demonstrated with cisplatin as the toxicant. We believe that a time-dependent approach could improve the in vitro assessment of toxicity.


Sign in / Sign up

Export Citation Format

Share Document