scholarly journals Experimental hyperthyroidism does not induce hepatic insulin resistance in the miniature pig

1986 ◽  
Vol 234 (3) ◽  
pp. 537-541 ◽  
Author(s):  
M J Müller ◽  
J Möring ◽  
H J Seitz

The effect of hypo- and hyper-thyroidism on insulin-mediated alterations in tracer-determined glucose kinetics and the arterial concentration of gluconeogenic precursors were investigated in 24 h-starved conscious unrestrained miniature pigs. Hyperinsulinaemia (about 40 microunits/ml) decreased blood glucose and, transiently, glucose output at unaltered glucose utilization in all thyroid states: this effect was pronounced in hyperthyroid (-50%) and less in hypothyroid pigs (-25%) compared with euthyroid controls (-35%). We conclude that moderate experimental hyperthyroidism does not induce hepatic insulin resistance, whereas hypothyroidism slightly impairs insulin action with respect to the regulation of glucose output.

1989 ◽  
Vol 257 (3) ◽  
pp. E301-E308 ◽  
Author(s):  
C. H. Lang ◽  
C. Dobrescu

The present study examined whether sepsis exacerbates the diabetes-induced peripheral and hepatic insulin resistance. Vascular catheters were placed in diabetic (70 mg/kg streptozotocin, 4-wk duration) and nondiabetic rats, and sepsis was produced by subcutaneous injections of live Escherichia coli. Basal glucose metabolism was determined with the use of [3-3H]glucose initiated 18 h after the first injection of bacteria. Thereafter, in vivo insulin action was assessed with the use of the euglycemic hyperinsulinemic clamp technique. Sepsis in nondiabetic rats produced a 57% reduction in the maximal responsiveness for the insulin-induced increase in total glucose utilization compared with nondiabetic nonseptic animals. Diabetes alone decreased both insulin sensitivity and responsiveness. When the septic insult was superimposed on the diabetic condition, the maximum responsiveness was unchanged compared with non-septic diabetic rats, but the 50% maximally efficient dose was reduced from 817 to 190 microU/ml, suggesting an improvement in insulin sensitivity. Sepsis did not alter the insulin-induced suppression of hepatic glucose output in either nondiabetic or diabetic animals. Sepsis increased the plasma concentrations of epinephrine, norepinephrine, glucagon, and corticosterone in both nondiabetic and diabetic rats; however, the elevation in catecholamines and glucagon was 65 to 250% greater in the diabetic animals. These results indicate that hypermetabolic sepsis produces peripheral insulin resistance in nondiabetic rats but does not worsen the preexisting insulin resistance in diabetic animals, despite the higher prevailing blood levels of glucagon and catecholamines.


2020 ◽  
Vol 244 (2) ◽  
pp. 353-367 ◽  
Author(s):  
Jiali Liu ◽  
Yue Li ◽  
Xiaoyan Zhou ◽  
Xi Zhang ◽  
Hao Meng ◽  
...  

High-fat diet (HFD) not only induces insulin resistance in liver, but also causes autophagic imbalance and metabolic disorders, increases chronic inflammatory response and induces mitochondrial dysfunction. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) has recently emerged as an important regulator of glucose metabolism and skeletal muscle insulin action. Its activation has been involved in the improvement of hepatic and adipose insulin action. But the underlying mechanism is not fully understood. In the present study, we aimed to address the direct effects of CaMKIV in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. Our results indicated obese mice receiving CaMKIV showed decreased blood glucose and serum insulin and improved insulin sensitivity as well as increased glucose tolerance compared with vehicle injection. Meanwhile, defective hepatic autophagy activity, impaired insulin signaling, increased inflammatory response and mitochondrial dysfunction in liver tissues which are induced by high-fat diet were also effectively alleviated by injection of CaMKIV. Consistent with these results, the addition of CaMKIV to the culture medium of BNL cl.2 hepatocytes markedly restored palmitate-induced hepatic insulin resistance and autophagic imbalance. These effects were nullified by blockade of cyclic AMP response element-binding protein (CREB), indicating the causative role of CREB in action of CaMKIV. Our findings suggested that CaMKIV restores hepatic autophagic imbalance and improves impaired insulin sensitivity via phosphorylated CREB signaling pathway, which may offer novel opportunities for treatment of obesity and diabetes.


2007 ◽  
Vol 292 (2) ◽  
pp. E485-E493 ◽  
Author(s):  
Mark K. Todd ◽  
Matthew J. Watt ◽  
Jamie Le ◽  
Andrea L. Hevener ◽  
Lorraine P. Turcotte

In the present investigation, we studied the effects of thiazolidinedione (TZD) treatment on insulin-stimulated fatty acid (FA) and glucose kinetics in perfused muscle from high-fat (HF)-fed rats. We tested the hypothesis that TZDs prevent FA-induced insulin resistance by attenuating proinflammatory signaling independently of myocellular lipid levels. Male Wistar rats were assigned to one of three 3-wk dietary groups: control chow fed (CON), 65% HF diet (HFD), or TZD- (troglitazone or rosiglitazone) enriched HF diet (TZD + HFD). TZD treatment led to a significant increase in plasma membrane content of CD36 protein in muscle (red: P = 0.01, and white: P = 0.001) that correlated with increased FA uptake (45%, P = 0.002) and triacylglycerol (TG) synthesis (46%, P = 0.03) during the perfusion. Importantly, whereas HF feeding caused increased basal TG ( P = 0.047), diacylglycerol ( P = 0.002), and ceramide ( P = 0.01) levels, TZD treatment only prevented the increase in muscle ceramide. In contrast, all of the muscle inflammatory markers altered by HF feeding (↑NIK protein content, P = 0.009; ↑IKKβ activity, P = 0.006; ↓IκB-α protein, P = 0.03; and ↑JNK phosphorylation, P = 0.003) were completely normalized by TZD treatment. Consistent with this, HFD-induced decrements in insulin action were also prevented by TZD treatment. Thus our findings support the notion that TZD treatment causes increased FA uptake and TG accumulation in skeletal muscle under insulin-stimulated conditions. Despite this, TZDs suppress the inflammatory response to dietary lipid overload, and it is this mechanism that correlates strongly with insulin sensitivity.


2015 ◽  
Vol 67 (4) ◽  
pp. 218-227 ◽  
Author(s):  
Ok-Kyung Kim ◽  
Woojin Jun ◽  
Jeongmin Lee

Background: Obesity is a major risk factor in the development of hepatic insulin resistance, which is characterized by an impairment of insulin ability to inhibit glucose output. Although the underlying mechanism for the link between obesity and insulin resistance in the liver is unclear, it has been widely reported and suggested that hepatic endoplasmic reticulum (ER) stress and inflammation induced by obesity lead to the development of hepatic insulin resistance and gluconeogenesis. Summary: This review addresses the aspects of ER stress and inflammation currently understood to be involved in metabolic disease, including their role in obesity, hepatic insulin resistance, and hyperglycemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyu Cao ◽  
Xiaotong Ye ◽  
Shuang Zhang ◽  
Li Wang ◽  
Yanhong Xu ◽  
...  

Extracellular ADP, a derivative of ATP, interacts with the purinergic receptors in the cell membrane to regulate cellular activities. This signaling pathway remains unknown in the regulation of blood glucose in vivo. We investigated the acute activity of ADP in mice through a peritoneal injection. In the lean mice, in response to the ADP treatment, the blood glucose was elevated, and pyruvate tolerance was impaired. Hepatic gluconeogenesis was enhanced with elevated expression of glucogenic genes (G6pase and Pck1) in the liver. An elevation was observed in NADH, cAMP, AMP, GMP and citrate in the liver tissue in the targeted metabolomics assay. In the primary hepatocytes, ADP activated the cAMP/PKA/CREB signaling pathway, which was blocked by the antagonist (2211) of the ADP receptor P2Y13. In the circulation, gluconeogenic hormones including glucagon and corticosterone were elevated by ADP. Insulin and thyroid hormones (T3 and T4) were not altered in the blood. In the diet-induced obese (DIO) mice, NADH was elevated in the liver tissue to match the hepatic insulin resistance. Insulin resistance was intensified by ADP for further impairment in insulin tolerance. These data suggest that ADP induced the blood glucose through direct and indirect actions in liver. One of the potential pathways involves activation of the P2Y13/cAMP/PKA/CREB signaling pathway in hepatocytes and the indirect pathway may involve induction of the gluconeogenic hormones. NADH is a signal for gluconeogenesis in the liver of both DIO mice and lean mice.


1993 ◽  
Vol 265 (6) ◽  
pp. E845-E851 ◽  
Author(s):  
G. Rossi ◽  
R. S. Sherwin ◽  
A. S. Penzias ◽  
P. Lapaczewski ◽  
R. J. Jacob ◽  
...  

To determine the temporal sequence of pregnancy-induced changes in insulin action and secretion, awake midpregnant (11-12 days) and late pregnant (19-20 days) rats underwent a two-step euglycemic hyperinsulinemic or a hyperglycemic clamp study after a 24-h fast. During euglycemia, insulin-stimulated increments in glucose uptake and clearance in midpregnant rats were reduced by 60-70% at the lower dose (insulin approximately 360 pM) and by 20-30% at the higher dose (insulin approximately 1,750 pM; P < 0.01 vs. virgin controls). Insulin action was also diminished in late pregnant rats. However, the magnitude of resistance did not increase. Insulin-mediated suppression of glucose production was only minimally impaired in midpregnancy. In contrast, glucose production was virtually unchanged in late pregnancy, even at the highest insulin dose. During hyperglycemia, insulin responses in late pregnancy were markedly increased 5-fold above controls and 2.5-fold above midpregnant rats (P < 0.05). We conclude that rat pregnancy is characterized by the early appearance of peripheral insulin resistance. As pregnancy progresses toward term, marked hepatic insulin resistance and insulin hypersecretion develop, whereas peripheral insulin resistance demonstrates negligible changes. These data imply that insulin hypersecretion during late pregnancy is most closely linked to hepatic insulin resistance, at least in 24-h-fasted animals.


1988 ◽  
Vol 255 (2) ◽  
pp. E173-E179 ◽  
Author(s):  
A. I. Salhanick ◽  
J. M. Amatruda

Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, we investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyltransferase. CMP reduced neuraminidase-releasable [14C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.


2012 ◽  
Vol 167 (3) ◽  
pp. 301-309 ◽  
Author(s):  
Pedro Iglesias ◽  
Rafael Selgas ◽  
Sara Romero ◽  
Juan J Díez

Fibroblast growth factor 21 (FGF21), a 181 amino acid circulating protein, is a member of the FGF superfamily, with relevant metabolic actions. It acts through the interaction with specific FGF receptors and a cofactor called β-Klotho, whose expression is predominantly detected in metabolically active organs. FGF21 stimulates glucose uptake in adipocytes via the induction of glucose transporter-1. This action is additive and independent of insulin. β-Cell function and survival are preserved, and glucagon secretion is reduced by this protein, thus decreasing hepatic glucose production and improving insulin sensitivity. Lipid profile has been shown to be improved by FGF21 in several animal models. FGF21 increases energy expenditure in rodents and induces weight loss in diabetic nonhuman primates. It also exerts favorable effects on hepatic steatosis and reduces tissue lipid content in rodents. Adaptive metabolic responses to fasting, including stimulation of ketogenesis and fatty acid oxidation, seem to be partially mediated by FGF21. In humans, serum FGF21 concentrations have been found elevated in insulin-resistant states, such as impaired glucose tolerance and type 2 diabetes. FGF21 levels are correlated with hepatic insulin resistance index, fasting blood glucose, HbA1c, and blood glucose after an oral glucose tolerance test. A relationship between FGF21 levels and long-term diabetic complications, such as nephropathy and carotid atheromatosis, has been reported. FGF21 levels decreased in diabetic patients after starting therapy with insulin or oral agents. Increased FGF21 serum levels have also been found to be associated with obesity. In children, it is correlated with BMI and leptin levels, whereas in adults, FGF21 levels are mainly related to several components of the metabolic syndrome. Serum FGF21 levels have been found to be elevated in patients with ischemic heart disease. In patients with renal disease, FGF21 levels exhibited a progressive increase as renal function deteriorates. Circulating FGF21 levels seem to be related to insulin resistance and inflammation in dialysis patients. In summary, FGF21 is a recently identified hormone with antihyperglycemic, antihyperlipidemic, and thermogenic properties. Direct or indirect potentiation of its effects might be a potential therapeutic target in insulin-resistant states.


1997 ◽  
Vol 272 (2) ◽  
pp. R526-R531 ◽  
Author(s):  
M. J. Pagliassotti ◽  
P. A. Prach

A high-sucrose diet reduces the ability of insulin to suppress hepatic glucose production (hepatic insulin resistance) in rats. The purpose of the present study was to investigate the contribution of hepatic gluconeogenesis to sucrose-induced hepatic insulin resistance. Single-pass liver perfusions were performed on 24-h food-deprived male Wistar rats after 8 wk on either a high-corn starch (ST; 68% of energy) or high-sucrose (SU; 68% of energy) diet. Hepatic glucose output (HGO, micromol of glucose x min(-1) x g(-1)) in the presence of lactate, alanine, or dihydroxyacetone (DHA) was used as an estimate of gluconeogenic capacity, because liver glycogen levels after the 24-h fast were negligible (<1.2 mg/g). HGO was significantly (P < 0.05) greater in SU vs. ST at all concentrations of lactate, alanine, and DHA. Maximal rates of HGO were 1.9 +/- 0.4 and 2.8 +/- 0.3 at 10 mM lactate, 0.6 +/- 0.2 and 1.4 +/- 0.3 at 10 mM alanine, and 1.7 +/- 0.3 and 2.6 +/- 0.2 at 20 mM DHA in ST and SU, respectively. When HGO was matched between SU and ST with the use of different precursor concentrations, there was a significant (P < 0.05) reduction in the ability of insulin (175 microU/ml) to suppress HGO in SU vs. ST. These data suggest that sucrose feeding increases gluconeogenesis from lactate, alanine, and DHA and that this route of glucose production is resistant to insulin suppression.


Sign in / Sign up

Export Citation Format

Share Document