scholarly journals Levels of G-proteins in liver and brain of lean and obese (ob/ob) mice

1992 ◽  
Vol 282 (1) ◽  
pp. 15-23 ◽  
Author(s):  
N McFarlane-Anderson ◽  
J Bailly ◽  
N Bégin-Heick

G-protein levels were assessed in liver and brain membranes of lean and obese mice. ADP-ribosylation and immunodetection studies revealed a decrease in the abundance of Gs and Gi alpha-subunits in the liver membranes of obese mice compared with lean mice. In contrast, in brain membranes, the abundance of these proteins was not significantly different between lean and obese mice. Studies at the mRNA level in both liver and brain revealed no difference in gene expression between lean and obese mice. Protein and mRNA studies both showed that Gs, Gi alpha 1, Gi alpha 2, Go alpha and G beta subunits are present in brain membranes, and Gi alpha 3 is barely detectable. In liver, Ga alpha, Gi alpha 2 and G beta subunits are the major constituents, whereas Gi alpha 1, Gi alpha 3 and Go alpha are barely detectable. It is possible that the differences observed at the protein level are due to different rates of translation of the mRNA. Different rates of release of the alpha-subunits from the membrane and/or different rates of degradation would also explain these results.

1995 ◽  
Vol 269 (6) ◽  
pp. H1865-H1873 ◽  
Author(s):  
R. Kacimi ◽  
J. M. Moalic ◽  
A. Aldashev ◽  
D. E. Vatner ◽  
J. P. Richalet ◽  
...  

Chronic hypoxia impairs adrenergic responsiveness. A modulation of Gs and/or G1 protein alpha-subunits may be associated with the downregulation of the beta-adrenergic receptors previously found in chronic hypoxia. G protein gene expression and protein level and function in rat hearts exposed to a 30-day hypobaric chronic hypoxia were compared with control rat hearts. No change was observed in G alpha s mRNA levels in either right or left ventricles. In right ventricles, mRNA levels of G alpha i-2 increased by 40% (P < 0.05), but not in left ventricles. In both left and right ventricles, chronic hypoxia did not modify G alpha i-2 and G alpha s protein amounts, but significantly decreased functional activity of G alpha s. In conclusion, gene expression, protein levels of G alpha s and G alpha i-2, and activity of G alpha s do not change in parallel fashion with chronic hypoxia. In chronic hypoxic right ventricles, although the mRNA level of G alpha i-2 is increased, the protein level is unchanged. One potential mechanism of desensitization to catecholamines in chronic hypoxia appears to involve a decreased functional activity of G alpha s in spite of normal mRNA and protein levels


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3977-3977
Author(s):  
Ida Bruun Kristensen ◽  
Jacob Haaber ◽  
Maria B Lyng ◽  
Lise Pedersen ◽  
Lars Melholt Rasmussen ◽  
...  

Abstract Abstract 3977 Osteolytic bone disease (OBD) in multiple myeloma (MM) is known to be caused by a combination of osteoclast hyperactivation and osteoblast inhibition. One of the pathways known to be involved in osteoblast inhibition from in vitro studies is the HGF pathway consisting of HGF, its receptor MET, the co-receptor Syndecan-1 (SDC-1), the partial MET antagonist Decorin and HGF activator responsible for HGF processing to its active form. So far, gene expression studies in MM have been performed on isolated MM plasma cells or bone marrow (BM) aspirates, which are not completely representative of the cell composition in the BM micro-environment. We used a novel strategy, whereby gene expression of factors associated with the HGF pathway was evaluated in snap-frozen BM biopsies, and moreover we determined the protein levels in matched BM plasma samples. An additional BM core biopsy obtained during the diagnostic procedure of MM patients was snap-frozen. Biopsies were cut, homogenized and RNA was purified and analyzed by qRT-PCR using low density arrays (Applied Biosystems). The relative quantitative gene expression was calculated using 3 internal reference genes (ABL, GAPDH and GUS). OBD was evaluated using standard radiographs. All patients were untreated and did not receive medicine that could influence bone remodeling. We examined 10 healthy volunteers (HV), 35 monoclonal gammopathy of unknown significance (MGUS) and 65 untreated MM patients, which according to radiographic findings were divided into NO/LOW and advanced OBD, i.e. OBD in ≥2 regions. ELISA was performed on a total of 31 matched BM plasma samples of HV, MGUS and MM obtained at the same time point as the biopsies. In addition, extra samples without gene data (N=52) were analyzed. Commercial kits for SDC-1 (Diaclone), HGF (RnD, Quantikine) and Decorin (RnD, Duoset) were run in duplicates according to manufacturer's instructions. Gene expression of HGF, SDC1, and MET were significantly different comparing HV, MGUS, no/low and advanced OBD (p<0.05) (For HGF, see figure 1). Decorin was not associated to OBD. HGF activator was not expressed in any of our samples, but only in the positive control. A significant correlation between gene and protein expression levels measured by ELISA was found for SDC-1 (Spearman's rho= 0.463, p=0.0058) and HGF (Spearman's rho=0.45, p=0.01). No correlation was found between Decorin gene levels and BM plasma levels (Spearman's rho =-0.24, p=0.22). The protein level of SDC-1 and HGF in BM plasma were both upregulated in MM and associated significantly to OBD level (p<0.05), while Decorin were significantly downregulated in MGUS and MM samples compared to HVs (p<0.05). A significant difference in HGF BM plasma levels were found between patients with no/limited OBD (median: 1.7ng/mL) and advanced OBD (median: 6.2ng/mL) in BM plasma. In our expression study reflecting the in vivo situation in MM patients, genes in the HGF pathway and proteins were significantly associated to OBD. The use of whole snap-frozen BM biopsies is a novel strategy for evaluation of gene expression in MM making it possible to investigate patients independent of degree of MM plasma cell infiltration. In addition to the dys-regulated gene expression levels alteration of SDC-1 and HGF was also observed at protein level, supporting the gene expression findings, and underscoring the usefulness of BM biopsies for gene expression studies in MM. Furthermore, our study for the first time shows up regulation of HGF in association with OBD at both gene and protein level in a large clinical material. Figure 1A. HGF Gene Expression levels in whole snap-frozen BM biopsies. Figure 1B. HGF protein levels in BM plasma (pg/mL). 1 = HV, 2 = MGUS, 3 = no/low OBD MM, 4 = advanced OBD MM. Figure 1A. HGF Gene Expression levels in whole snap-frozen BM biopsies. Figure 1B. HGF protein levels in BM plasma (pg/mL). 1 = HV, 2 = MGUS, 3 = no/low OBD MM, 4 = advanced OBD MM. Disclosures: No relevant conflicts of interest to declare.


PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lijun Zhang ◽  
Chunyan Li ◽  
Fang Wang ◽  
Shenghua Zhou ◽  
Mingjun Shangguan ◽  
...  

PPARαagonist clofibrate reduces cholesterol and fatty acid concentrations in rodent liver by an inhibition of SREBP-dependent gene expression. In present study we investigated the regulation mechanisms of the triglyceride- and cholesterol-lowering effect of the PPARαagonist clofibrate in broiler chickens. We observed that PPARαagonist clofibrate decreases the mRNA and protein levels of LXRαand the mRNA and both precursor and nuclear protein levels of SREBP1 and SREBP2 as well as the mRNA levels of the SREBP1 (FASNandGPAM) and SREBP2 (HMGCRandLDLR) target genes in the liver of treated broiler chickens compared to control group, whereas the mRNA level ofINSIG2, which inhibits SREBP activation, was increased in the liver of treated broiler chickens compared to control group. Taken together, the effects of PPARαagonist clofibrate on lipid metabolism in liver of broiler chickens involve inhibiting transcription and activation of SREBPs and SREBP-dependent lipogenic and cholesterologenic gene expression, thereby resulting in a reduction of the triglyceride and cholesterol levels in liver of broiler chickens.


1996 ◽  
Vol 133 (5) ◽  
pp. 1027-1040 ◽  
Author(s):  
S P Denker ◽  
J M McCaffery ◽  
G E Palade ◽  
P A Insel ◽  
M G Farquhar

Heterotrimeric G proteins are well known to be involved in signaling via plasma membrane (PM) receptors. Recent data indicate that heterotrimeric G proteins are also present on intracellular membranes and may regulate vesicular transport along the exocytic pathway. We have used subcellular fractionation and immunocytochemical localization to investigate the distribution of G alpha and G beta gamma subunits in the rat exocrine pancreas which is highly specialized for protein secretion. We show that G alpha s, G alpha i3 and G alpha q/11 are present in Golgi fractions which are &gt; 95% devoid of PM. Removal of residual PM by absorption on wheat germ agglutinin (WGA) did not deplete G alpha subunits. G alpha s was largely restricted to TGN-enriched fractions by immunoblotting, whereas G alpha i3 and G alpha q/11 were broadly distributed across Golgi fractions. G alpha s did not colocalize with TGN38 or caveolin, suggesting that G alpha s is associated with a distinct population of membranes. G beta subunits were barely detectable in purified Golgi fractions. By immunofluorescence and immunogold labeling, G beta subunits were detected on PM but not on Golgi membranes, whereas G alpha s and G alpha i3 were readily detected on both Golgi and PM. G alpha and G beta subunits were not found on membranes of zymogen granules. These data indicate that G alpha s, G alpha q/11, and G alpha i3 associate with Golgi membranes independent of G beta subunits and have distinctive distributions within the Golgi stack. G beta subunits are thought to lock G alpha in the GDP-bound form, prevent it from activating its effector, and assist in anchoring it to the PM. Therefore the presence of free G alpha subunits on Golgi membranes has several important functional implications: it suggests that G alpha subunits associated with Golgi membranes are in the active, GTP-bound form or are bound to some other unidentified protein(s) which can substitute for G beta gamma subunits. It further implies that G alpha subunits are tethered to Golgi membranes by posttranslational modifications (e.g., palmitoylation) or by binding to another protein(s).


2017 ◽  
Vol 313 (4) ◽  
pp. F887-F898 ◽  
Author(s):  
Suk-Jeong Kim ◽  
Ji-Eun Kim ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
So-Young Park

Regulation of lipogenesis by pathophysiological factors in the liver and skeletal muscle is well understood; however, regulation in the kidney is still unclear. To elucidate nutritional regulation of lipogenic factors in the kidney, we measured the renal expression of lipogenic transcriptional factors and enzymes during fasting and refeeding in chow-fed and high-fat-fed mice. We also examined the regulatory effect of the liver X receptor (LXR) on the expression of lipogenic factors. The renal gene expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS) was reduced by fasting for 48 h and restored by refeeding, whereas the mRNA levels of forkhead box O (FOXO)1/3 were increased by fasting and restored by refeeding. Accordingly, protein levels of SREBP-1, FAS, and phosphorylated FOXO1/3 were reduced by fasting and restored by refeeding. The patterns of lipogenic factors expression in the kidney were similar to those in the liver and skeletal muscle. However, this phasic regulation of renal lipogenic gene expression was blunted in diet-induced obese mice. LXR agonist TO901317 increased the lipogenic gene expression and the protein levels of SREBP-1 precursor and FAS but not nuclear SREBP-1. Moreover, increases in insulin-induced gene mRNA and nuclear carbohydrate-responsive element binding protein (ChREBP) levels were observed in the TO901317-treated mice. These results suggest that the kidney shows flexible suppression and restoration of lipogenic factors following fasting and refeeding in lean mice, but this is blunted in obese mice. LXR is involved in the renal expression of lipogenic enzymes, and ChREBP may mediate the response.


1989 ◽  
Vol 9 (8) ◽  
pp. 3567-3570 ◽  
Author(s):  
G Shyamala ◽  
Y Gauthier ◽  
S K Moore ◽  
M G Catelli ◽  
S J Ullrich

Murine uterine steady-state protein levels of the 90-kilodalton heat shock protein (HSP90) have been demonstrated recently to be increased by estrogen in a target tissue- and steroid-specific manner (C. Ramachandran, M.G. Catelli, W. Schneider, and G. Shyamala, Endocrinology 123:956-961, 1988). We now report that this regulation occurred with both the HSP86 and HSP84 forms of HSP90 as well as with the 94-kilodalton glucose-regulated protein. At the mRNA level, this response was greatest for HSP86 (15-fold). In contrast, estradiol had no significant effect on HSP70.


2005 ◽  
Vol 288 (2) ◽  
pp. C338-C349 ◽  
Author(s):  
Parco M. Siu ◽  
Emidio E. Pistilli ◽  
David C. Butler ◽  
Stephen E. Alway

The influence of aging on skeletal myocyte apoptosis is not well understood. In this study we examined apoptosis and apoptotic regulatory factor responses to muscle atrophy induced via limb unloading following loading-induced hypertrophy. Muscle hypertrophy was induced by attaching a weight to one wing of young and aged Japanese quails for 14 days. Removing the weight for 7 or 14 days after the initial 14 days of loading induced muscle atrophy. The contralateral wing served as the intra-animal control. A time-released bromodeoxyuridine (BrdU) pellet was implanted subcutaneously with wing weighting to identify activated satellite cells/muscle precursor cells throughout the experimental period. Bcl-2 mRNA and protein levels decreased after 7 days of unloading, but they were unchanged after 14 days of unloading in young muscles. Bcl-2 protein level but not mRNA level decreased after 7 days of unloading in muscles of aged birds. Seven days of unloading increased the mRNA level of Bax in muscles from both young and aged birds. Fourteen days of unloading increased mRNA and protein levels of Bcl-2, decreased protein levels of Bax, and decreased nuclear apoptosis-inducing factor (AIF) protein level in muscles of aged birds. BrdU-positive nuclei were found in all unloaded muscles from both age groups, but the number of BrdU-positive nuclei relative to the total nuclei decreased after 14 days of unloading compared with 7 days of unloading. The TdT-mediated dUTP nick end labeling (TUNEL) index was higher after 7 days of unloading in both young and aged muscles and after 14 days of unloading in aged muscles. Immunofluorescent staining revealed that almost all of the TUNEL-positive nuclei were also BrdU immunopositive, suggesting that activated satellite cell nuclei (both fused and nonfused) underwent nuclear apoptosis during unloading. There were significant correlations among levels of Bcl-2, Bax, and AIF and TUNEL index. Our data are consistent with the hypothesis that apoptosis regulates, at least in part, unloading-induced muscle atrophy and loss of activated satellite cell nuclei in previously loaded muscles. Moreover, these data suggest that aging influences the apoptotic responses to prolonged unloading following hypertrophy in skeletal myocytes.


1989 ◽  
Vol 9 (8) ◽  
pp. 3567-3570
Author(s):  
G Shyamala ◽  
Y Gauthier ◽  
S K Moore ◽  
M G Catelli ◽  
S J Ullrich

Murine uterine steady-state protein levels of the 90-kilodalton heat shock protein (HSP90) have been demonstrated recently to be increased by estrogen in a target tissue- and steroid-specific manner (C. Ramachandran, M.G. Catelli, W. Schneider, and G. Shyamala, Endocrinology 123:956-961, 1988). We now report that this regulation occurred with both the HSP86 and HSP84 forms of HSP90 as well as with the 94-kilodalton glucose-regulated protein. At the mRNA level, this response was greatest for HSP86 (15-fold). In contrast, estradiol had no significant effect on HSP70.


2016 ◽  
Vol 13 (10) ◽  
pp. 6993-6998
Author(s):  
Haiyan Wang ◽  
Shuzhe Ding

Objective: The aim of this study was to investigate the effects of 6-week endurance training on COUP-TF I and COUP-TF II gene expression of SD rats and GK rats. Method: 20 male SD rats, about 4 weeks old, weighing 100 ± 5 g; 12 GK rats, about 8 weeks old, weighing 250 ± 5 g, SD rats were randomly divided into SD control group (C, n = 10), endurance group (E, n = 10), GK rats were randomly divided into GK control group (H, n = 6), endurance group (R, n = 6). Endurance training in rats for 6 weeks of treadmill training, training six days a week, once a day for a maximum speed of not more than 16.7 m/min, 1 hour a day. Real-time PCR was used to detect the mRNA level of COUP-TF I and COUP-TF II. Western Blotting was used to detect the protein level COUP-TF I. Results: (1) SD rats: endurance training significantly reduced blood glucose but had no apparent effect on IRI; endurance training significantly increased COUP-TF I mRNA level but significantly reduced COUP-TF II mRNA level; endurance exercises had no apparent effect on COUP-TF I protein level (2) GK rats: endurance training significantly reduced blood glucose and IRI; endurance training both significantly reduced the mRNA level of COUP-TF I and COUP-TF II; endurance training significantly reduced COUP-TF I protein level. Conclusion: (1) Endurance training was beneficial to reduce the level of blood glucose in GK rats, which may mitigate IR. (2) The effects of endurance exercise on COUP-TF I gene expression in skeletal muscle are opposite under normal physiological and diabetes, which may be related to the differences of strains, age and diet between GK rats and SD rats. (3) Compared with COUP-TF I, the adaptation of COUP-TF II mRNA level to endurance exercise was exactly the same for GK rats and SD rats, which indicating that the COUP-TF II mRNA level may play an important role in the effect of endurance training that can prevention and improvement of insulin resistance.


2015 ◽  
Vol 18 (1) ◽  
pp. 112 ◽  
Author(s):  
Mohsen Sharifi Klishadi ◽  
Farideh Zarei ◽  
Seyyed Hassan Hejazian ◽  
Ali Moradi ◽  
Mahdieh Hemati ◽  
...  

PURPOSE: Sirtuin-3 (SIRT3) deacetylase protects the heart against oxidative stress via survival factors upregulation. Clinical and experimental studies have demonstrated that activation of systemic and local renin-angiotensin system (RAS) is implicated in ischemia-induced cardiac injury. However, the relation between RAS and SIRT3 in pathophysiology of myocardial ischemia reperfusion is unknown. In this study, the cardiac transcription and expression of SIRT3 levels was examined in response to ischemia reperfusion in untreated and losartan treated rats. METHODS: Rats were divided into control group, losartan group (L), and ischemia reperfusion (IR) groups with (L+IR) or without losatran pretreatment. Some rats were included as sham-operated and saline groups. IR was induced by left anterior descending artery occlusion. SIRT3 protein levels were determined by Western blot technique. The genes expression was specified by real-time RT-PCR. Arrhythmias were assessed according to the Lambeth conventions. RESULTS: In L+IR group a significant reduction was noted in the number of ventricular ectopic beats (VEBs) and episodes of ventricular tachycardia (VT) (VEBs: P<0.001; VT: P<0.01 vs. IR). In IR group, SIRT3 protein level was decreased in the ischemic tissue by 26.7±5.9% (P<0.01 vs. Control). However, in the non-ischemic tissue the changes of SIRT3 protein content were not significant. In L+IR group SIRT3 protein levels in the ischemic part of Left ventricle were significantly different from IR group (P<0.001). SIRT3 mRNA level did not change significantly among the experimental groups. Thioredoxin-1 and catalase transcription level was increased in L+IR group compared to IR group (P<0.01). CONCLUSION: A decreased SIRT3 protein levels subsequent to IR might be a novel signaling mechanism involved in IR injury. Losartan at non–hypotensive dose exerts anti-ischemic effects in part by normalizing the SIRT3 protein level and upregulating the survival factors encoding genes transcription in ischemic tissue of the heart. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Sign in / Sign up

Export Citation Format

Share Document