scholarly journals Marked increases in concentrations of apolipoprotein in the cerebrospinal fluid of poliovirus-infected macaques: relations between apolipoprotein concentrations and severity of brain injury

1997 ◽  
Vol 321 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Kuniaki SAITO ◽  
Mitsuru SEISHIMA ◽  
Melvyn P. HEYES ◽  
Hua SONG ◽  
Suwako FUJIGAKI ◽  
...  

Apolipoproteins in cerebrospinal fluid (CSF) might have important functional roles in the pathophysiology of brain and lipid metabolism in the vascular component. The present study examined apolipoprotein A-I (apo-A-I) and apolipoprotein E (apo-E) levels in CSF and serum from poliovirus-infected macaques. Poliovirus-infected macaques developed motor deficits and were classified into three groups: (1) muscle weakness in one or both legs; (2) partial paralysis in one or both legs; (3) complete paralysis in one or both legs. No motor deficits were evident in the control or sham-treated macaques. Apo-A-I concentrations in CSF were markedly elevated in poliovirus-infected macaques with weakness, partial or complete paralysis, in comparison with either control or sham-treated animals, and were proportional to the severity of motor impairment. Apo-E concentrations in CSF were also significantly elevated in poliovirus-infected macaques with complete paralysis. The magnitude of increase in CSF apo-A-I or apo-E concentrations was also closely associated with the degree of histologic neurological damage and inflammation (lesion scores). However, no changes in serum apo-A-I and apo-E concentrations were observed in the poliovirus-infected macaques compared with control macaques. Furthermore there were no significant correlations apo-A-I or apo-E concentrations between serum and CSF. We hypothesize that the elevation of apo-A-I and apo-E concentrations after poliovirus infection is caused by immune stimulation within the central nervous system (CNS). Measures of CSF apo-A-I and apo-E levels might serve as a useful marker for the severity and/or the range of CNS injury.

1999 ◽  
Vol 45 (9) ◽  
pp. 1431-1438 ◽  
Author(s):  
Kazuyoshi Yamauchi ◽  
Minoru Tozuka ◽  
Hiroya Hidaka ◽  
Eiko Hidaka ◽  
Yoshiyuki Kondo ◽  
...  

Abstract Background: Apolipoprotein (apo) E, one of the main apolipoproteins in the central nervous system, may play an important role in lipid metabolism; however, the details of its function are poorly understood. In this study, we characterized apoE-containing lipoproteins in cerebrospinal fluid (CSF) and examined the effect of apoE phenotype on the distribution of apoE among the lipoprotein fractions. Methods: CSF lipoproteins were fractionated by gel filtration and ultracentrifugation, and then characterized by electrophoresis, immunoblot, electron microscopy, and analysis of apoE, total cholesterol, and phospholipid concentrations. Results: The ratio of sialylated to nonsialylated apoE was higher in CSF than in serum. However, the fundamental forms containing apoE homodimers or heterodimers [such as apo(E-AII) and apo(AII-E2-AII) complexes] were similar in CSF and serum. apoE-containing lipoproteins were fractionated at densities of <1.006, 1.063–1.125, and 1.125–1.21 kg/L. Neither apoE nor apoAI was detected in the fraction with a density range of 1.006–1.063 kg/L. The diameters of the lipoprotein particles with densities of <1.006, 1.063–1.125, and 1.125–1.21 kg/L were 16.7 ± 3.1, 14.0 ± 3.2, and 11.6 ± 2.8 nm (mean ± SD, n = 200), respectively. All of these lipoproteins exhibited a spherical structure. The distribution profile of apoE-containing lipoproteins was affected by the apoE phenotype. A relatively large amount of apoE-containing lipoproteins was isolated from the fraction with a density >1.125 kg/L obtained from CSF associated with apoE2 or apoE3. This tendency was more obvious in CSF associated with apoE2 than in CSF without apoE2. apoE-containing lipoproteins were predominantly observed in the fraction with a density of <1.006 kg/L obtained from CSF associated with apoE4. Conclusions: The lipoproteins in CSF have a unique composition that is different from that of the lipoproteins in plasma. However, the differences in diameter between the CSF fractions were not as large as for the serum fractions. Our data suggest that the apoE phenotype may affect the distribution profile of apoE-containing lipoproteins in the CSF. This would mean that the metabolism of apoE-containing lipoproteins depends on the apoE isoform present.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Lenka Hajduková ◽  
Ondřej Sobek ◽  
Darina Prchalová ◽  
Zuzana Bílková ◽  
Martina Koudelková ◽  
...  

NSE and S100B belong among the so-called structural proteins of the central nervous system (CNS). Lately, this group of structural proteins has been profusely used as specific biomarkers of CNS tissue damage. So far, the majority of the research papers have focused predominantly on the concentrations of these proteins in blood in relation to CNS damage of various origins. Considering the close anatomic and functional relationship between the brain or spinal cord and cerebrospinal fluid (CSF), in case of a CNS injury, a rapid and pronounced increase of the concentrations of structural proteins specifically in CSF takes place. This study inquires into the physiological concentrations of NSE and S100B proteins in CSF, carried out on a sufficiently large group of 601 patients. The detected values can be used for determination of a normal reference range in CSF in a clinical laboratory diagnostics.


Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


Author(s):  
Tiago Silva Holanda Ferreira ◽  
Gilnard Caminha de Menezes Aguiar ◽  
Daniel Gurgel Fernandes Távora ◽  
Lucas Alverne Freitas de Albuquerque ◽  
Stélio da Conceição Araújo Filho

Abstract Introduction Cerebral metastases are the most common cancer of the central nervous system (CNS). Meningeal infiltration by neoplasms that did not originate in the CNS is a rare fact that is present in 0.02% of the autopsies.Epidemiologically, the radiological presentation mimicking a subdural hematoma is even more uncommon. We report a case of meningeal carcinomatosis by an adenocarcinoma of the prostate mimicking a chronic subdural hematoma. Case Report A 60-year-old male patient was diagnosed with prostate cancer in 2011. He underwent radical resection of the prostate, as well as adjuvant hormonal therapy and chemotherapy.Five years later, the patient presented peripheral facial paralysis that evolved with vomiting and mental confusion. Tomography and magnetic resonance imaging scans confirmed the subdural collection.At surgery, the dura was infiltrated by friable material of difficult hemostasis. The anatomicopathological examination showed atypical epithelial cells. The immunohistochemistry was positive for prostate-specific antigen (PSA) and other key markers, and it was conclusive for meningeal carcinomatosis by a prostate adenocarcinoma. Discussion Meningeal carcinomatosis presents clinically with headache, motor deficits, vomiting, changes in consciousness and seizures.The two most discussed mechanisms of neoplastic infiltration are the hematogenous route and retrograde drainage by the vertebral venous plexus. Conclusion Variable clinical presentations may occur in dural metastases; however, the radiological presentation as subdural hematoma is rare. There are few descriptions of cases like this one in the literature.To support the diagnosis, the previous medical history is as important as the complementary exams and the radiological findings, because the symptoms are common at the neurological emergency. To our knowledge, this is the first report of a prostate neoplasm mimicking chronic subdural hematoma in Brazil.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 300
Author(s):  
Petr Kelbich ◽  
Aleš Hejčl ◽  
Jan Krejsek ◽  
Tomáš Radovnický ◽  
Inka Matuchová ◽  
...  

Extravasation of blood in the central nervous system (CNS) represents a very strong damaged associated molecular patterns (DAMP) which is followed by rapid inflammation and can participate in worse outcome of patients. We analyzed cerebrospinal fluid (CSF) from 139 patients after the CNS hemorrhage. We compared 109 survivors (Glasgow Outcome Score (GOS) 5-3) and 30 patients with poor outcomes (GOS 2-1). Statistical evaluations were performed using the Wilcoxon signed-rank test and the Mann–Whitney U test. Almost the same numbers of erythrocytes in both subgroups appeared in days 0–3 (p = 0.927) and a significant increase in patients with GOS 2-1 in days 7–10 after the hemorrhage (p = 0.004) revealed persistence of extravascular blood in the CNS as an adverse factor. We assess 43.3% of patients with GOS 2-1 and only 27.5% of patients with GOS 5-3 with low values of the coefficient of energy balance (KEB < 15.0) in days 0–3 after the hemorrhage as a trend to immediate intensive inflammation in the CNS of patients with poor outcomes. We consider significantly higher concentration of total protein of patients with GOS 2-1 in days 0–3 after hemorrhage (p = 0.008) as the evidence of immediate simultaneously manifested intensive inflammation, swelling of the brain and elevation of intracranial pressure.


Author(s):  
Sara Gredmark-Russ ◽  
Renata Varnaite

Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


1927 ◽  
Vol 23 (11) ◽  
pp. 1182-1182
Author(s):  
D. K. Bogoroditsky

The technique of this reaction, suggested by two Japanese authors, Takata and Aga, in 1926, consists in adding 1 drop of a 10% Na carbonici solution and 0.3 of a freshly prepared mixture of equal parts 0.5% sulfa solution and 0.02% fuchsin (non-acid) solution to 1 cc of liquid. The mixture is shaken well and left in a test tube, and examined now after shaking, after h, after h, and after 24 h. Having tested this reaction in 60 patients, D.K. Bogoroditsky found that it is a very subtle indicator of the state of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document