scholarly journals Disruption of endogenous regulator homeostasis underlies the mechanism of rat CYP1A1 mRNA induction by metyrapone

1998 ◽  
Vol 331 (1) ◽  
pp. 273-281 ◽  
Author(s):  
Joanna L. HARVEY ◽  
Alan J. PAINE ◽  
Matthew C. WRIGHT

The transcriptional induction of the cytochrome P-450 1A1 (CYP1A1) gene by xenobiotics such as polyaromatic hydrocarbons is dependent on their interaction with the aryl hydrocarbon receptor. Administration of the structurally unrelated compounds metyrapone (a cytochrome P-450 inhibitor) or dexamethasone (a glucocorticoid) to male rats does not induce hepatic CYP1A1 mRNA. However, administration of both metyrapone and dexamethasone to male rats results in the induction of hepatic CYP1A1 mRNA expression. The induction response is mimicked in vitro in cultured rat hepatocytes by the addition of metyrapone and dexamethasone to a serum-free culture medium, suggesting that these compounds act directly on the liver in vivo to effect hepatic CYP1A1 mRNA induction. An examination of the characteristics of CYP1A1 induction by metyrapone and dexamethasone in combination in vitro indicate that at least 6 h of treatment is required for detectable levels of CYP1A1 mRNA to accumulate in hepatocytes. In contrast, β-naphthoflavone, which is known to bind to the aryl hydrocarbon receptor to effect CYP1A1 gene expression, induces detectable levels of CYP1A1 mRNA within 2 h of treatment. CYP1A1 mRNA is also induced when hepatocytes are treated with metyrapone in combination with the protein synthesis inhibitor cycloheximide but not with dexamethasone in combination with cycloheximide, indicating that CYP1A1 mRNA induction is strictly dependent on the presence of metyrapone and suggesting that the metyrapone-associated induction of CYP1A1 mRNA is dependent on a loss of a constitutively expressed protein that functions to suppress CYP1A1 gene expression. The role of dexamethasone in metyrapone-associated induction of CYP1A1 is probably mediated through the glucocorticoid receptor since the glucocorticoid receptor antagonist RU486 reduces the levels of CYP1A1 mRNA induced by metyrapone and dexamethasone in combination. Increasing the levels of the photosensitizer riboflavin present in the culture medium 10-fold and exposure to light increases the levels of CYP1A1 mRNA induced by metyrapone and dexamethasone in combination in vitro, suggesting that photoactivation of inducing medium constituent(s) might be required for induction. Failure to induce CYP1A1 mRNA by co-administration of metyrapone and dexamethasone in hepatocytes cultured in a balanced salt solution with or without photoactivation indicates that induction is dependent on a photoactivated component of the culture medium and not on metyrapone or dexamethasone alone. The addition of tryptophan in the presence of riboflavin to the balanced salt solution restores CYP1A1 mRNA induction by metyrapone alone and induction is increased when medium is exposed to light, indicating that induction is dependent on tryptophan photoactivation in vitro. Metyrapone failed to compete with 2,3,7,8-tetrachlorodibenzo-p-dioxin for specific binding to the aryl hydrocarbon receptor in rat liver cytosolic fractions. These results suggest that CYP1A1 might be induced in rats by metyrapone through an indirect mechanism associated with an elevation in the level of an endogenously generated inducer such as photoactivated product(s) of tryptophan and not because of metyrapone's interacting with the aryl hydrocarbon receptor. The dependence of CYP1A1 induction on dexamethasone or cycloheximide suggests that derepression by a glucocorticoid receptor-modulated negative-acting factor of CYP1A1 gene expression might be critical to induction by metyrapone.

2008 ◽  
Vol 206 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Marc Veldhoen ◽  
Keiji Hirota ◽  
Jillian Christensen ◽  
Anne O'Garra ◽  
Brigitta Stockinger

Th17 cell differentiation is dependent on interleukin (IL)-6 and transforming growth factor (TGF)-β, and it is modulated by activation of the aryl hydrocarbon receptor (AhR). In this study, we show that differentiation of Th17 cells, but not Th1 or induced regulatory T (iT reg) cells, is increased by endogenous AhR agonists present in culture medium. Th17 development from wild-type mice is suboptimal in the presence of the AhR antagonist CH-223191, similar to the situation in AhR-deficient mice, which show attenuated IL-17 production and no IL-22 production. The presence of natural AhR agonists in culture medium is also revealed by the induction of CYP1A1, a downstream target of AhR activation. However, the most commonly used medium, RPMI, supports very low levels of Th17 polarization, whereas Iscove's modified Dulbecco's medium, a medium richer in aromatic amino acids, which give rise to AhR agonists, consistently results in higher Th17 expansion in both mouse and human cells. The relative paucity of AhR agonists in RPMI medium, coupled with the presence of factors conducive to IL-2 activation and enhanced Stat5 phosphorylation, conspire against optimal Th17 differentiation. Our data emphasize that AhR activation plays an essential part in the development of Th17 cells and provide a rational explanation for the poor in vitro polarization of Th17 cells that is reported in the majority of publications for both mouse and human cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hong Lan Jin ◽  
Yujin Choi ◽  
Kwang Won Jeong

The aryl hydrocarbon receptor (AHR) is known to mediate the cellular reaction involved in processing environmental contaminants and, ultimately, preventing accumulation of unfavorable extra lipids and proteins. Glucocorticoid receptor (GR) mediates the expression of genes associated with anti-inflammatory properties. Because AHR and GR are closely related in lipid metabolic dysregulation and inflammation, we speculate that AHR and GR may play a crucial role in AMD pathogenesis and focus on their crosstalk in human retinal pigment epithelial cells (ARPE-19). However, how AHR and GR regulate each other’s signaling pathways is still poorly understood. In this research, we demonstrate that GR attenuates AHR-mediated gene expression by inhibition of nuclear translocation of AHR mediated by TCDD. Chromatin immunoprecipitation analysis demonstrated that GR repress AHR recruitment and chromatin accessibility response to TCDD + Dex treatment leading to repression of AHR target genes. In contrast, AHR facilitates GR-mediated expression in ARPE-19. AHR increases GR recruitment on GRE of GR target genes. Coimmunoprecipitation assay revealed that AHR is associated with GR in ARPE-19 cells and the interaction is enhanced by the addition of TCDD and Dex. Taken together, these studies provide a molecular mechanism of crosstalk between AHR and GR in target gene expression in ARPE-19 cells.


2017 ◽  
Vol 71 ◽  
pp. 285-293
Author(s):  
Muhammad Yar ◽  
Lubna Shahzadi ◽  
Ariba Farooq ◽  
Saima Jalil Imran ◽  
José P. Cerón-Carrasco ◽  
...  

2009 ◽  
Vol 87 (9) ◽  
pp. 674-683 ◽  
Author(s):  
Ganesh Rajaraman ◽  
Guixiang Yang ◽  
Jie Chen ◽  
Thomas K.H. Chang

The aryl hydrocarbon receptor (AhR) signaling pathway regulates the production of CYP1B1 and CYP1A1, which catalyze the bioactivation of various procarcinogens. In the present study, we investigated the effect of Ginkgo biloba extract and some of its chemical constituents on CYP1B1 and CYP1A1 gene expression and AhR activity in cultured MCF-10A human mammary epithelial cells. Treatment of MCF-10A cells with noncytotoxic concentrations of G. biloba extract (25–300 µg/mL for 24 or 48 h) increased CYP1B1 and CYP1A1 mRNA expression, which was accompanied by an increase in CYP1-mediated ethoxyresorufin O-dealkylation activity. The inductive effects of G. biloba extract were attenuated by an AhR antagonist (3′,4′-dimethoxyflavone). G. biloba extract (25–300 µg/mL) increased AhR-dependent reporter activity, as determined in MCF-10A cells transfected with an AhR-regulated luciferase reporter plasmid (pGudluc6.1). Bilobalide and ginkgolides A, B, C, and J were not responsible for the modulation of CYP1B1 and CYP1A1 gene expression or AhR activation by G. biloba extract. In contrast, quercetin increased CYP1B1 and CYP1A1 gene expression and activated AhR, whereas kaempferol and isorhamnetin suppressed constitutive CYP1B1 expression and antagonized AhR activation by benzo[a]pyrene. Overall, our findings provide an impetus for future investigations on the effect of G. biloba extract in CYP1-mediated chemical carcinogenesis.


2020 ◽  
Vol 21 (11) ◽  
pp. 4111
Author(s):  
Samantha C. Faber ◽  
Sara Giani Tagliabue ◽  
Laura Bonati ◽  
Michael S. Denison

1,2-naphthoquinone (1,2-NQ) and 1,4-naphthoquinone (1,4-NQ) are clinically promising biologically active chemicals that have been shown to stimulate the aryl hydrocarbon receptor (AhR) signaling pathway, but whether they are direct or indirect ligands or activate the AhR in a ligand-independent manner is unknown. Given the structural diversity of AhR ligands, multiple mechanisms of AhR activation of gene expression, and species differences in AhR ligand binding and response, we examined the ability of 1,2-NQ and 1,4-NQ to bind to and activate the mouse and human AhRs using a series of in vitro AhR-specific bioassays and in silico modeling techniques. Both NQs induced AhR-dependent gene expression in mouse and human hepatoma cells, but were more potent and efficacious in human cells. 1,2-NQ and 1,4-NQ stimulated AhR transformation and DNA binding in vitro and was inhibited by AhR antagonists. Ligand binding analysis confirmed the ability of 1,2-NQ and 1,4-NQ to competitively bind to the AhR ligand binding cavity and the molecular determinants for interactions were predicted by molecular modeling methods. NQs were shown to bind distinctly differently from that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and differences were also observed between species. Mutation of amino acid residues (F289, M334, and M342) involved in critical NQ:AhR binding interactions, decreased NQ- and AhR-dependent gene expression, consistent with a role for these residues in binding and activation of the AhR by NQs. These studies provide insights into the molecular mechanism of action of NQs and contribute to the development of emerging NQ-based therapeutics.


2008 ◽  
pp. 427-435
Author(s):  
Z Dvořák ◽  
R Vrzal ◽  
P Pávek ◽  
J Ulrichová

Aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR) play crucial role in the regulation of drug metabolizing enzymes and in many essential physiological processes. Cellular signaling by these receptors shares several functional and regulatory features. Here we investigated regulatory cross-talk between these two receptors. Human hepatoma cells (HepG2) were the model of choice. We analyzed the effects of dexamethasone (DEX) and dioxin (TCDD) on i) expression of AhR and GRα mRNAs; ii) levels of AhR and GR proteins; iii) transcriptional activities of AhR and GR in reporter assays; iv) 7-ethoxyresorufinO-deethylase activity (EROD). We found that both DEX and TCDD affected AhR and GR mRNAs expression, proteins levels and transcriptional activities in HepG2 cells. These effects on cellular signaling by AhR and GR comprised up-/down-regulation of gene expression and ligand-dependent protein degradation. We conclude that interactive regulatory cross-talk between GR and AhR receptors in HepG2 cells defines possible implications in physiology and drug metabolism. Future research should be focused on the investigation of AhR-GR cross-talk in various normal human cells and tissues both in vitro and in vivo.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 929
Author(s):  
Cintia Scucuglia Heluany ◽  
Paula Barbim Donate ◽  
Ayda Henriques Schneider ◽  
André Luis Fabris ◽  
Renan Augusto Gomes ◽  
...  

Rheumatoid arthritis (RA) development is strongly associated with cigarette smoke exposure, which activates the aryl hydrocarbon receptor (AhR) as a trigger for Th17 inflammatory pathways. We previously demonstrated that the exposure to hydroquinone (HQ), one of the major compounds of cigarette tar, aggravates the arthritis symptomatology in rats. However, the mechanisms related to the HQ-related RA still remain elusive. Cell viability, cytokine secretion, and gene expression were measured in RA human fibroblast-like synoviocytes (RAHFLS) treated with HQ and stimulated or not with TNF-α. Antigen-induced arthritis (AIA) was also elicited in wild type (WT), AhR −/− or IL-17R −/− C57BL/6 mice upon daily exposure to nebulized HQ (25ppm) between days 15 to 21. At day 21, mice were challenged with mBSA and inflammatory parameters were assessed. The in vitro HQ treatment up-regulated TNFR1, TNFR2 expression, and increased ROS production. The co-treatment of HQ and TNF-α enhanced the IL-6 and IL-8 secretion. However, the pre-incubation of RAHFLS with an AhR antagonist inhibited the HQ-mediated cell proliferation and gene expression profile. About the in vivo approach, the HQ exposure worsened the AIA symptoms (edema, pain, cytokines secretion and NETs formation) in WT mice. These AIA effects were abolished in HQ-exposed AhR −/− and IL-17R −/− animals though. Our data demonstrated the harmful HQ influence over the onset of arthritis through the activation and proliferation of synoviocytes. The HQ-related RA severity was also associated with the activation of AhR and IL-17 pathways, highlighting how cigarette smoke compounds can contribute to the RA progression.


Sign in / Sign up

Export Citation Format

Share Document