scholarly journals Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum

1998 ◽  
Vol 334 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Matthew BERRIMAN ◽  
Alan H. FAIRLAMB

Cyclosporin (Cs) A has pronounced antimalarial activity in vitro and in vivo. In other organisms, the drug is thought to exert its effects either by inhibiting the peptidylprolyl cis/trans isomerase activity of cyclophilin (CyP) or by forming a CyP–CsA complex that inhibits the phosphatase activity of calcineurin. We have cloned and overexpressed in Escherichia coli a gene encoding a CyP from Plasmodium falciparum (PfCyP19) that is located on chromosome 3. The sequence of PfCyP19 shows remarkable sequence identity with human CyPA and, unlike the two previously identified CyPs from P. falciparum, PfCyP19 has no signal peptide or N-terminal sequence extension, suggesting a cytosolic localization. All the residues implicated in the recognition of the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide are conserved, resulting in characteristically high Michaelis–Menten and specificity constants (Km ≫ 120 µM, kcat/Km = 1.2×107 M-1·s-1 respectively). As the first line in the functional characterization of this enzyme, we have assessed its binding affinity for CsA. In accordance with its tryptophan-containing CsA-binding domain, PfCyP19 binds CsA with high affinity (Kd = 13 nM, Ki = 6.9 nM). Twelve CsA analogues were also found to possess Ki values similar to CsA, with the notable exceptions of Val2-Cs (Ki = 218 nM) and Thr2-Cs (Ki = 690 nM). The immunosuppressants rapamycin and FK506 were inactive as inhibitors, consistent with other members of the CyP family of rotamases. The CsA analogues were also assessed as inhibitors of P. falciparum growth in vitro. Although their antimalarial activity did not correlate with inhibition of enzyme activity, residues 3 and 4 of CsA appeared to be important for inhibition of parasite growth and residues 1 and 2 for PfCyP19 inhibition. We propose that a malarial CyP–CsA complex presents residues 3 and 4 as part of an ‘effector surface ’ for recognition by a downstream target, similar to the proposed mechanism for T-cell immunosuppression.

Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


2021 ◽  
Author(s):  
Hyuk Nam Kwon ◽  
Kristen Kurtzeborn ◽  
Xing Jin ◽  
Bruno Reversade ◽  
Sunghyouk Park ◽  
...  

Nephron endowment is defined by fetal kidney growth and it critically dictates renal health in adults. Despite the advances in understanding the molecular regulation of nephron progenitor maintenance, propagation, and differentiation, the causes for low congenital nephron count and contribution of basic metabolism to nephron progenitor regulation remain poorly studied. Here we have analyzed the metabolic effects that depend on and are triggered by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which is an essential intracellular cascade required for nephron progenitor maintenance. Our combined approach utilizing LC/MS-based metabolomics and transcriptional profiling of MAPK/ERK-deficient cells identified 18 out of total 46 metabolites (38 untargeted and 8 targeted) that were down-regulated. These represent glycolysis, gluconeogenesis, pentose phosphate, glycine, and proline pathways among others. We focused our functional characterization of identified metabolites on pyruvate and proline. Use of in vitro kidney cultures revealed dosage-specific functions for pyruvate in not only controlling ureteric bud branching but also determining progenitor and differentiated (tip-trunk) cell identities. Our in vivo characterization of Pycr1/2 double knockout kidneys revealed functional requirement for proline metabolism in nephron progenitor maintenance. In summary, our results demonstrate that MAPK/ERK cascade regulates energy and amino acid metabolism in developing kidney where these metabolic pathways specifically regulate progenitor preservation.


2009 ◽  
Vol 105 (1) ◽  
pp. 275-279 ◽  
Author(s):  
Matheus Santos de Sá ◽  
José Fernando Oliveira Costa ◽  
Antoniana Ursine Krettli ◽  
Mariano Gustavo Zalis ◽  
Gabriela Lemos de Azevedo Maia ◽  
...  

Open Biology ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 200172
Author(s):  
Ya Zhang ◽  
Luis Alfonso Yañez Guerra ◽  
Michaela Egertová ◽  
Cleidiane G. Zampronio ◽  
Alexandra M. Jones ◽  
...  

Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate—the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1–3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


Cell Reports ◽  
2020 ◽  
Vol 31 (12) ◽  
pp. 107817
Author(s):  
Paul-Christian Burda ◽  
Thomas Crosskey ◽  
Katharina Lauk ◽  
Aimo Zurborg ◽  
Christoph Söhnchen ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Sandra Quilodrán-Vega ◽  
Leonardo Albarracin ◽  
Flavia Mansilla ◽  
Lorena Arce ◽  
Binghui Zhou ◽  
...  

Potential probiotic or immunobiotic effects of lactic acid bacteria (LAB) isolated from the milk of the South American camelid llama (Lama glama) have not been reported in published studies. The aim of the present work was to isolate beneficial LAB from llama milk that can be used as potential probiotics active against bacterial pathogens. LAB strains were isolated from llama milk samples. In vitro functional characterization of the strains was performed by evaluating the resistance against gastrointestinal conditions and inhibition of the pathogen growth. Additionally, the adhesive and immunomodulatory properties of the strains were assessed. The functional studies were complemented with a comparative genomic evaluation and in vivo studies in mice. Ligilactobacillus salivarius TUCO-L2 showed enhanced probiotic/immunobiotic potential compared to that of other tested strains. The TUCO-L2 strain was resistant to pH and high bile salt concentrations and demonstrated antimicrobial activity against Gram-negative intestinal pathogens and adhesion to mucins and epithelial cells. L. salivarius TUCO-L2 modulated the innate immune response triggered by Toll-like receptor (TLR)-4 activation in intestinal epithelial cells. This effect involved differential regulation of the expression of inflammatory cytokines and chemokines mediated by the modulation of the negative regulators of the TLR signaling pathway. Moreover, the TUCO-L2 strain enhanced the resistance of mice to Salmonella infection. This is the first report on the isolation and characterization of a potential probiotic/immunobiotic strain from llama milk. The in vitro, in vivo, and in silico investigation performed in this study reveals several research directions that are needed to characterize the TUCO-L2 strain in detail to position this strain as a probiotic or immunobiotic that can be used against infections in humans or animals, including llama.


Sign in / Sign up

Export Citation Format

Share Document