scholarly journals Young plasma ameliorates aging-related acute brain injury after intracerebral hemorrhage

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Jun-Jie Yuan ◽  
Qin Zhang ◽  
Chang-Xiong Gong ◽  
Fa-Xiang Wang ◽  
Jia-Cheng Huang ◽  
...  

Abstract Aging has been shown to contribute to both the declined biofunctions of aging brain and aggravation of acute brain damage, and the former could be reversed by young plasma. These results suggest that young plasma treatment may also reduce the acute brain damage induced by intracerebral hemorrhage (ICH). In the present study, we first found that the administration of young plasma significantly reduced the mortality and neurological deficit score in aging ICH rodents, which might be due to the decreased brain water content, damaged neural cells, and increased survival neurons around the perihematomal brain tissues. Then, proteomics analysis was used to screen out the potential neuroprotective circulating factors and the results showed that many factors were changed in health human plasma among young, adult, and old population. Among these significantly changed factors, the plasma insulin-like growth factor 1 (IGF-1) level was significantly decreased with age, which was further confirmed both in human and rats detected by ELISA. Additionally, the brain IGF-1 protein level in aging ICH rats was markedly decreased when compared with young rats. Interestingly, the relative decreased brain IGF-1 level was reversed by the treatment of young plasma in aging ICH rats, while the mRNA level was non-significantly changed. Furthermore, the IGF-1 administration significantly ameliorated the acute brain injury in aging ICH rats. These results indicated that young circulating factors, like IGF-1, may enter brain tissues to exert neuroprotective effects, and young plasma may be considered as a novel therapeutic approach for the clinical treatment of aging-related acute brain injury.

2018 ◽  
Vol 9 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Peiyu Li ◽  
Cheng Jiwu

Abstract Background This study evaluates the effect of butin against brain edema in intracerebral hemorrhage (ICH). Methodology ICH was induced by injecting bacterial collagenase in the brain and all the animals were separated into four groups such as control group, ICH group treated with vehicle, Butin 25 and 50 mg/kg group receives butin (25 and 50 mg/kg, i.p.)60 min after the induction of ICH in all animals. One day after neurological score, hemorrhagic injury and expressions of protein responsible for apoptosis and inflammatory cytokines were assessed in the brain tissue of ICH rats. Result Neurological scoring significantly increased and hemorrhagic lesion volume decreased in butin treated group of rats compared to ICH group. However, treatment with butin significantly decreases the ratio of Bax/Bcl-2 and protein expression of Cleaved caspase-3 than ICH group in dose dependent manner. Level of inflammatory mediators such as tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) in the brain tissues were significantly decreased in the butin treated group than ICH group. In addition butin attenuates the altered signaling pathway of NF-κB in the brain tissues of ICH rats. Conclusion Our study concludes that butin attenuates the altered behavior and neuronal condition in ICH rats by reducing apoptosis and inflammatory response.


Author(s):  
Jiangling Song ◽  
Jennifer A. Kim ◽  
Aaron Frank Struck ◽  
Rui Zhang ◽  
M. Brandon Westover

Secondary brain injury (SBI) is defined as new or worsening injury to the brain after an initial neurologic insult, such as hemorrhage, trauma, ischemic stroke, or infection. It is a common and potentially preventable complication following many types of primary brain injury (PBI). However, mechanistic details about how PBI leads to additional brain injury and evolves into SBI are poorly characterized. In this work, we propose a mechanistic model for the metabolic supply demand mismatch hypothesis (MSDMH) of SBI. Our model, based on the Hodgkin-Huxley model, supplemented with additional dynamics for extracellular potassium, oxygen concentration and excitotoxity, provides a high-level unified explanation for why patients with acute brain injury frequently develop SBI. We investigate how decreased oxygen, increased extracellular potassium, excitotoxicity, and seizures can induce SBI, and suggest three underlying paths for how events following PBI may lead to SBI. The proposed model also helps explain several important empirical observations, including the common association of acute brain injury with seizures, the association of seizures with tissue hypoxia and so on. In contrast to current practices which assume that ischemia plays the predominant role in SBI, our model suggests that metabolic crisis involved in SBI can also be non-ischemic. Our findings offer a more comprehensive understanding of the complex interrelationship among potassium, oxygen, excitotoxicity, seizures and SBI.


2015 ◽  
Vol 36 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Qian Yu ◽  
Zhihong Lu ◽  
Lei Tao ◽  
Lu Yang ◽  
Yu Guo ◽  
...  

Background/Aims: Stroke is among the top causes of death worldwide. Neuroprotective agents are thus considered as potentially powerful treatment of stroke. Methods: Using both HT22 cells and male Sprague-Dawley rats as in vitro and in vivo models, we investigated the effect of NaHS, an exogenous donor of H2S, on the focal cerebral ischemia-reperfusion (I/R) induced brain injury. Results: Administration of NaHS significantly decreased the brain infarcted area as compared to the I/R group in a dose-dependent manner. Mechanistic studies demonstrated that NaHS-treated rats displayed significant reduction of malondialdehyde content, and strikingly increased activity of superoxide dismutases and glutathione peroxidase in the brain tissues compared with I/R group. The enhanced antioxidant capacity as well as restored mitochondrial function are NaHS-treatment correlated with decreased cellular reactive oxygen species level and compromised apoptosis in vitro or in vivo in the presence of NaHS compared with control. Further analysis revealed that the inhibition of PARP-1 cleavage and AIF translocation are involved in the neuroprotective effects of NaHS. Conclusion: Collectively, our results suggest that NaHS has potent protective effects against the brain injury induced by I/R. NaHS is possibly effective through inhibition of oxidative stress and apoptosis.


Author(s):  
Troy Rondinone

This chapter first describes the physical toll boxing took on boxers such as Gaspar Ortega and Emile Griffith. Research shows that boxers suffer disproportionally from neurological damage. The scientific term for it is chronic traumatic brain injury. The results are permanent and progressive. Symptoms include Parkinsonism, dementia, personality changes, and cerebellum dysfunction. Gaspar began suffering from nightmares. Griffith exhibited brain damage while Don Jordan lost his mind as well. The remainder of the chapter details Gaspar's life and activities after retiring from boxing. The brain damage that wiped the joy out of the golden years of so many of this boxing cohort did not strike Gaspar. He attributes this to his defensive, slippery style. Though he is occasionally off balance when he walks, that is minor compared to the devastation that brought such misery to so many other retired fighters.


2005 ◽  
Vol 33 (3) ◽  
pp. 661-666 ◽  
Author(s):  
J Andrew McKee ◽  
Randall P. Brewer ◽  
Gary E. Macy ◽  
Barbara Phillips-Bute ◽  
Kurt A. Campbell ◽  
...  

Author(s):  
Rong Zhang ◽  
Tingting Miao ◽  
Min Qin ◽  
Chengsi Zhao ◽  
Wei Wang ◽  
...  

BackgroundAngiostrongylus cantonensis (A. cantonensis), is a food-borne zoonotic parasite that can cause central nervous system (CNS) injury characterized by eosinophilic meningitis. However, the pathogenesis of angiostrongylosis remains elusive. Natural killer cells (NK cells) are unique innate lymphocytes important in early defense against pathogens. The aim of this study was to investigate the role of NK cells in A. cantonensis infection and to elucidate the key factors that recruit NK cells into the CNS.MethodsMouse model of A. cantonensis infection was established by intragastric administration of third-stage larvae. The expression of cytokines and chemokines at gene and protein levels was analyzed by qRT-PCR and ELISA. Distribution of NK cells was observed by immunohistochemistry and flow cytometry. NK cell-mediated cytotoxicity against YAC-1 cells was detected by LDH release assay. The ability of NK cells to secrete cytokines was determined by intracellular flow cytometry and ELISA. Depletion and adoptive transfer of NK cells in vivo was induced by tail vein injection of anti-asialo GM1 rabbit serum and purified splenic NK cells, respectively. CX3CL1 neutralization experiment was performed by intraperitoneal injection of anti-CX3CL1 rat IgG.ResultsThe infiltration of NK cells in the CNS of A. cantonensis-infected mice was observed from 14 dpi and reached the peak on 18 and 22 dpi. Compared with uninfected splenic NK cells, the CNS-infiltrated NK cells of infected mice showed enhanced cytotoxicity and increased IFN-γ and TNF-α production ability. Depletion of NK cells alleviated brain injury, whereas adoptive transfer of NK cells exacerbated brain damage in A. cantonensis-infected mice. The expression of CX3CL1 in the brain tissue and its receptor CX3CR1 on the CNS-infiltrated NK cells were both elevated after A. cantonensis infection. CX3CL1 neutralization reduced the percentage and absolute number of the CNS-infiltrated NK cells and relieved brain damage caused by A. cantonensis infection.ConclusionsOur results demonstrate that the up-regulated CX3CL1 in the brain tissue recruits NK cells into the CNS and aggravates brain damage caused by A. cantonensis infection. The findings improve the understanding of the pathogenesis of angiostrongyliasis and expand the therapeutic intervention in CNS disease.


Author(s):  
Roman A. Kireev ◽  
Sara Cuesta ◽  
Elena Vara ◽  
Jesus A.F. Tresguerres

AbstractAging of the brain causes important reductions in quality of life and has wide socio-economic consequences. An increase in oxidative stress, and the associated inflammation and apoptosis, could be responsible for the pathogenesis of aging associated brain lesions. Melatonin has neuroprotective effects, by limiting the negative effects of oxygen and nitrogen free radicals. Growth hormone (GH) might exert additional neuro-protective and or neurogenic effects on the brain. The molecular mechanisms of the protective effects of GH and melatonin on the aging brain have been investigated in young and old Wistar rats. A reduction in the total number of neurons in the hilus of the dentate gyrus was evident at 24 months of age and was associated with a significant increase in inflammation markers as well as in pro-apoptotic parameters, confirming the role of apoptosis in its reduction. Melatonin treatment was able to enhance neurogenesis in old rats without modification of the total number of neurons, whereas GH treatment increased the total number of neurons without enhancing neurogenesis. Both GH and melatonin were able to reduce inflammation and apoptosis in the hippocampus. In conclusion, neuroprotective effects demonstrated by GH and melatonin in the hippocampus were exerted by decreasing inflammation and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document