scholarly journals Antimicrobial peptides from Capsicum chinense fruits: agronomic alternatives against phytopathogenic fungi

2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Layrana de Azevedo dos Santos ◽  
Gabriel Bonan Taveira ◽  
Marciele Souza da Silva ◽  
Rodrigo da Silva Gebara ◽  
Lídia da Silva Pereira ◽  
...  

Abstract In recent years, the antimicrobial activity of peptides isolated from a wide variety of organs from plant species has been reported. However, a few studies have investigated the potential of antimicrobial peptides (AMPs) found in fruits, especially Capsicum chinense (pepper). The present study aimed to purify and characterize peptides from Capsicum chinense fruits and evaluate their inhibitory activities against different phytopathogenic fungi and also analyze the possible mechanisms of action involved in microbial inhibition. After fruit protein extraction and high-performance liquid chromatography (HPLC), different fractions were obtained, named F1 to F10. Peptides in the F4 and F5 fractions were sequenced and revealed similarity with the plant antimicrobial peptides like non-specific lipid transfer proteins and defensin-like peptide. The F4 and F5 fractions presented strong antimicrobial activity against the fungus Fusarium solani and Fusarium oxysporum, causing toxic effects on these fungi, leading to membrane permeabilization, endogenous reactive oxygen species increase, activation of metacaspase and loss of mitochondrial function.

2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Álan C. Maracahipes ◽  
Gabriel B. Taveira ◽  
Erica O. Mello ◽  
André O. Carvalho ◽  
Rosana Rodrigues ◽  
...  

Abstract There are several phytosanitary problems that have been causing serious damage to the Capsicum crops, including anthracnose. Upon attack by certain pathogens, various protein molecules are produced, which are known as proteins related to pathogenesis (PR proteins), including antimicrobial peptides such as protease inhibitors, defensins and lipid transfer proteins (LTPs). The objective of this work is to identify antimicrobial proteins and/or peptides of two genotypes from Capsicum annuum fruits infected with Colletotrichum gloeosporioides. The fungus was inoculated into Capsicum fruits by the deposition of a spore suspension (106 conidia ml−1), and after 24 and 48 h intervals, the fruits were removed from the humid chamber and subjected to a protein extraction process. Protein analysis of the extracts was performed by tricine gel electrophoresis and Western blotting. The distinctive bands between genotypes in the electrophoresis profiles were subjected to mass spectrometry sequencing. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and β-1,3-glucanase activity assays were also performed and extracts were also tested for their ability to inhibit the growth of C. gloeosporioides fungi ‘in vitro’. There were several low molecular weight proteins in all treated samples, and some treatments in which antimicrobial peptides such as defensin, lipid transfer protein (LTP) and protease inhibitor have been identified. It was shown that the green fruits are more responsive to infection, showing the production of antimicrobial peptides in response to injury and inoculation of the fungus, what did not occur in ripe fruits under any treatment.


Author(s):  
M. V. Sycheva ◽  
A. S. Vasilchenko ◽  
E. A. Rogozhin ◽  
T. M. Pashkova ◽  
L. P. Popova ◽  
...  

Aim. Isolation and study ofbiological activity of antimicrobial peptides from chickens thrombocytes. Materials and methods. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect - by using fluorescent spectroscopy method with DNA-tropic dyes. Results. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. Conclusion. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.


2006 ◽  
Vol 51 (4) ◽  
pp. 1398-1406 ◽  
Author(s):  
Yuxin Chen ◽  
Michael T. Guarnieri ◽  
Adriana I. Vasil ◽  
Michael L. Vasil ◽  
Colin T. Mant ◽  
...  

ABSTRACT In the present study, the 26-residue amphipathic α-helical antimicrobial peptide V13KL (Y. Chen et al., J. Biol. Chem. 2005, 280:12316-12329, 2005) was used as the framework to study the effects of peptide hydrophobicity on the mechanism of action of antimicrobial peptides. Hydrophobicity was systematically decreased or increased by replacing leucine residues with less hydrophobic alanine residues or replacing alanine residues with more hydrophobic leucine residues on the nonpolar face of the helix, respectively. Hydrophobicity of the nonpolar face of the amphipathic helix was demonstrated to correlate with peptide helicity (measured by circular dichroism spectroscopy) and self-associating ability (measured by reversed-phase high-performance liquid chromatography temperature profiling) in aqueous environments. Higher hydrophobicity was correlated with stronger hemolytic activity. In contrast, there was an optimum hydrophobicity window in which high antimicrobial activity could be obtained. Decreased or increased hydrophobicity beyond this window dramatically decreased antimicrobial activity. The decreased antimicrobial activity at high peptide hydrophobicity can be explained by the strong peptide self-association which prevents the peptide from passing through the cell wall in prokaryotic cells, whereas increased peptide self-association had no effect on peptide access to eukaryotic membranes.


2020 ◽  
Vol 27 ◽  
Author(s):  
Marciele Souza da Silva ◽  
Valdirene Moreira Gomes ◽  
Gabriel Bonan Taveira ◽  
Layrana de Azevedo dos Santos ◽  
Álan C. Maracahipes ◽  
...  

Background: Antimicrobial peptides (AMPs) are found in the defense system in virtually all life forms, being present in many, if not all, plant species. Objective: The present work evaluated the antimicrobial, enzymatic activity and mechanism of action of the PEF2 fraction from Capsicum chinense Jack. seeds against phytopathogenic fungi. Methods: Peptides were extracted from C. chinense seeds and subjected to reverse-phase chromatography on an HPLC system using a C18 column coupled to a C8 guard column, then the obtained PEF2 fraction was rechromatographed using a C2/C18 column. Two fractions, named PEF2A and PEF2B, were obtained. The fractions were tested for antimicrobial activity on Colletotrichum gloeosporioides, Colletotrichum lindemuthianum, Fusarium oxysporum and Fusarium solani. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and α-amylase activity assays were also performed. The mechanism of action by which PEF2 acts on filamentous fungi was studied through analysis of membrane permeability and production of reactive oxygen species (ROS). Additionally, we investigated mitochondrial functionality and caspase activation in fungal cells. Results: It is possible to observe that PEF2 significantly inhibited trypsin activity and T. molitor larval α-amylase activity. The PEF2 fraction was able to inhibit the growth of C. gloeosporioides, C. lindemuthianum and F. oxysporum. PEF2A inhibited the growth of C. lindemuthianum (75%) and F. solani (43%). PEF2B inhibited C. lindemuthianum growth (66%) and F. solani (94%). PEF2 permeabilized F. solani cell membranes and induced ROS in F. oxysporum and F. solani. PEF2 could dissipate mitochondrial membrane potential but did not cause the activation of caspases in all studied fungi. Conclusion: The results may contribute to the biotechnological application of these AMPs in the control of pathogenic microorganisms in plants of agronomic importance.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


2021 ◽  
Vol 11 (12) ◽  
pp. 5352
Author(s):  
Ana Margarida Pereira ◽  
Diana Gomes ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
...  

Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Isabel J. Skypala ◽  
Ricardo Asero ◽  
Domingo Barber ◽  
Lorenzo Cecchi ◽  
Arazeli Diaz Perales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document