Mechanisms of integration of cells and extracellular matrices by integrins

2004 ◽  
Vol 32 (5) ◽  
pp. 822-825 ◽  
Author(s):  
M.J. Humphries ◽  
M.A. Travis ◽  
K. Clark ◽  
A.P. Mould

While it is self-evident that all extracellular molecules are an integral part of a multicellular organism, it is paradoxical that they are often considered to be dissociated from cells. The reality is that a continuum of dynamic, bi-directional interactions links the intracellular environment through cell-surface receptors to multimolecular extracellular assemblies. These interactions not only control the behaviour of individual cells, but also determine tissue architecture. Adhesion receptor function is partly determined by an ability to tether the contractile cytoskeleton to the plasma membrane, but there is also evidence that integrin receptors modulate signalling events that are essential for cellular differentiation. A major challenge is now to integrate work at the atomic, molecular and cellular levels, and obtain holistic insights into the mechanisms controlling cell adhesion. In the present study, we review current knowledge of the molecular mechanisms employed by cells to integrate with the extracellular matrix. Two main topics are covered: the adaptation of integrin structure for bi-directional signalling and the integration of integrin signalling with other receptors.


2014 ◽  
Vol 369 (1650) ◽  
pp. 20130466 ◽  
Author(s):  
Jose Reina ◽  
Cayetano Gonzalez

A strong correlation between centrosome age and fate has been reported in some stem cells and progenitors that divide asymmetrically. In some cases, such stereotyped centrosome behaviour is essential to endow stemness to only one of the two daughters, whereas in other cases causality is still uncertain. Here, we present the different cell types in which correlated centrosome age and fate has been documented, review current knowledge on the underlying molecular mechanisms and discuss possible functional implications of this process.



1992 ◽  
Vol 262 (5) ◽  
pp. F697-F704 ◽  
Author(s):  
S. Adler

The extracellular matrix (ECM) exerts important effects on cell function that play a vital role in such diverse processes as embryogenesis, wound healing, cancer metastasis, and inflammation. Interactions between cells and matrix are mediated by a variety of cell surface receptors for different components of the ECM. The integrin family of matrix receptors, the best-studied group thus far, has already been shown to play an important role in cell-matrix and cell-cell interactions in other systems. More recently, the types of integrin receptors present in the glomerulus and on cultured glomerular cells have been defined, and their potential involvement in glomerular injury has been postulated. This review will summarize current knowledge of integrin receptors, their distribution in the kidney, cultured glomerular cell-matrix interactions that might play a role in modulating the glomerular cell response to injury, and the potential role of integrins and other glomerular cell matrix receptors as targets of injury in proteinuric lesions.



Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 587
Author(s):  
Nongluk Sriwilaijaroen ◽  
Yasuo Suzuki

Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and βCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in βIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in βCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of βSARS-CoV in 2002–2004 and βMERS-CoV from 2012 to present. βSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.



2007 ◽  
Vol 20 (9) ◽  
pp. 1031-1039 ◽  
Author(s):  
Denise Altenbach ◽  
Silke Robatzek

Detection of potentially infectious microorganisms is essential for plant immunity. Microbial communities growing on plant surfaces are constantly monitored according to their conserved microbe-associated molecular patterns (MAMPs). In recent years, several pattern-recognition receptors, including receptor-like kinases and receptor-like proteins, and their contribution to disease resistance have been described. MAMP signaling must be carefully controlled and seems to involve receptor endocytosis. As a further surveillance layer, plants are able to specifically recognize microbial effector molecules via nucleotide-binding site leucine-rich repeat receptors (NB-LRR). A number of recent studies show that NB-LRR translocate to the nucleus in order to exert their activity. In this review, current knowledge regarding the recognition of MAMPs by surface receptors, receptor activation, signaling, and subcellular redistribution are discussed.



2019 ◽  
Vol 48 (1) ◽  
pp. 231-253 ◽  
Author(s):  
Jyotsana J. Parmar ◽  
Maxime Woringer ◽  
Christophe Zimmer

The genetic information that instructs transcription and other cellular functions is carried by the chromosomes, polymers of DNA in complex with histones and other proteins. These polymers are folded inside nuclei five orders of magnitude smaller than their linear length, and many facets of this folding correlate with or are causally related to transcription and other cellular functions. Recent advances in sequencing and imaging-based techniques have enabled new views into several layers of chromatin organization. These experimental findings are accompanied by computational modeling efforts based on polymer physics that can provide mechanistic insights and quantitative predictions. Here, we review current knowledge of the main levels of chromatin organization, from the scale of nucleosomes to the entire nucleus, our current understanding of their underlying biophysical and molecular mechanisms, and some of their functional implications.



2003 ◽  
Vol 285 (5) ◽  
pp. H1797-H1818 ◽  
Author(s):  
John P. Headrick ◽  
Ben Hack ◽  
Kevin J. Ashton

Cells of the cardiovascular system generate and release purine nucleoside adenosine in increasing quantities when constituent cells are “stressed” or subjected to injurious stimuli. This increased adenosine can interact with surface receptors in myocardial, vascular, fibroblast, and inflammatory cells to modulate cellular function and phenotype. Additionally, adenosine is rapidly reincorporated back into 5′-AMP to maintain the adenine nucleotide pool. Via these receptor-dependent and independent (metabolic) paths, adenosine can substantially modify the acute response to ischemic insult, in addition to generating a more sustained ischemia-tolerant phenotype (preconditioning). However, the molecular basis for acute adenosinergic cardioprotection remains incompletely understood and may well differ from more widely studied preconditioning. Here we review current knowledge and some controversies regarding acute cardioprotection via adenosine and adenosine receptor activation.



2021 ◽  
Vol 11 ◽  
Author(s):  
Chunyue Guo ◽  
Jun Zhou ◽  
Dengwen Li

IQ67-domain (IQD) proteins, first identified in Arabidopsis and rice, are plant-specific calmodulin-binding proteins containing highly conserved motifs. They play a critical role in plant defenses, organ development and shape, and drought tolerance. Driven by comprehensive genome identification and analysis efforts, IQDs have now been characterized in several species and have been shown to act as microtubule-associated proteins, participating in microtubule-related signaling pathways. However, the precise molecular mechanisms underpinning their biological functions remain incompletely understood. Here we review current knowledge on how IQD family members are thought to regulate plant growth and development by affecting microtubule dynamics or participating in microtubule-related signaling pathways in different plant species and propose some new insights.



2009 ◽  
Vol 364 (1530) ◽  
pp. 2709-2723 ◽  
Author(s):  
Mark P. Stevens ◽  
Tom J. Humphrey ◽  
Duncan J. Maskell

Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Infections may present in a variety of ways, from asymptomatic colonization to inflammatory diarrhoea or typhoid fever depending on serovar- and host-specific factors. Human diarrhoeal infections are frequently acquired via the food chain and farm environment by virtue of the ability of selected non-typhoidal serovars to colonize the intestines of food-producing animals and contaminate the avian reproductive tract and egg. Colonization of reservoir hosts often occurs in the absence of clinical symptoms; however, some S. enterica serovars threaten animal health owing to their ability to cause acute enteritis or translocate from the intestines to other organs causing fever, septicaemia and abortion. Despite the availability of complete genome sequences of isolates representing several serovars, the molecular mechanisms underlying Salmonella colonization, pathogenesis and transmission in reservoir hosts remain ill-defined. Here we review current knowledge of the bacterial factors influencing colonization of food-producing animals by Salmonella and the basis of host range, differential virulence and zoonotic potential.



2010 ◽  
Vol 391 (2/3) ◽  
Author(s):  
Albert Braeuning ◽  
Michael Schwarz

Abstract The liver is the major organ for metabolism of drugs and other xenobiotics. Expression of many drug-metabolizing enzymes is not equally distributed throughout the liver: under normal conditions, many of them, including the most relevant members of the cytochrome P450 superfamily, are exclusively expressed in a hepatocyte subpopulation located near branches of the efferent central vein. Activation of different ligand-dependent transcription factors by exogenous compounds stimulates high expression of certain cytochrome P450 isoforms. This process also occurs preferentially in perivenous hepatocytes. The mechanisms, however, which determine the zone-specificity of basal and xenobiotic-induced expression of cytochrome P450 enzymes, have remained largely unknown for decades. Very recently, signaling through the Wnt/β-catenin pathway has been implicated in the regulation of zonal gene expression in mouse liver. In this review, current knowledge of cytochrome P450 regulation by β-catenin-dependent transcription is summarized and underlying molecular mechanisms are discussed.



2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.



Sign in / Sign up

Export Citation Format

Share Document