Degradation of tau protein by autophagy and proteasomal pathways

2012 ◽  
Vol 40 (4) ◽  
pp. 644-652 ◽  
Author(s):  
Yipeng Wang ◽  
Eckhard Mandelkow

Tau aggregates are present in several neurodegenerative diseases and correlate with the severity of memory deficit in AD (Alzheimer's disease). However, the triggers of tau aggregation and tau-induced neurodegeneration are still elusive. The impairment of protein-degradation systems might play a role in such processes, as these pathways normally keep tau levels at a low level which may prevent aggregation. Some proteases can process tau and thus contribute to tau aggregation by generating amyloidogenic fragments, but the complete clearance of tau mainly relies on the UPS (ubiquitin–proteasome system) and the ALS (autophagy–lysosome system). In the present paper, we focus on the regulation of the degradation of tau by the UPS and ALS and its relation to tau aggregation. We anticipate that stimulation of these two protein-degradation systems might be a potential therapeutic strategy for AD and other tauopathies.

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2341 ◽  
Author(s):  
Rachel A. Coleman ◽  
Darci J. Trader

Protein accumulation has been identified as a characteristic of many degenerative conditions, such as neurodegenerative diseases and aging. In most cases, these conditions also present with diminished protein degradation. The ubiquitin-proteasome system (UPS) is responsible for the degradation of the majority of proteins in cells; however, the activity of the proteasome is reduced in these disease states, contributing to the accumulation of toxic protein. It has been hypothesized that proteasome activity, both ubiquitin-dependent and -independent, can be chemically stimulated to reduce the load of protein in diseased cells. Several methods exist to identify and characterize stimulators of proteasome activity. In this review, we detail the ways in which protease activity can be enhanced and analyze the biochemical and cellular methods of identifying stimulators of both the ubiquitin-dependent and -independent proteasome activities.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 607
Author(s):  
Soonsil Hyun ◽  
Dongyun Shin

Neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease, are a class of diseases that lead to dysfunction of cognition and mobility. Aggregates of misfolded proteins such as β-amyloid, tau, α-synuclein, and polyglutamates are known to be among the main causes of neurodegenerative diseases; however, they are considered to be some of the most challenging drug targets because they cannot be modulated by conventional small-molecule agents. Recently, the degradation of target proteins by small molecules has emerged as a new therapeutic modality and has garnered the interest of the researchers in the pharmaceutical industry. Bifunctional molecules that recruit target proteins to a cellular protein degradation machinery, such as the ubiquitin–proteasome system and autophagy–lysosome pathway, have been designed. The representative targeted protein degradation technologies include molecular glues, proteolysis-targeting chimeras, hydrophobic tagging, autophagy-targeting chimeras, and autophagosome-tethering compounds. Although these modalities have been shown to degrade many disease-related proteins, such technologies are expected to be potentially important for neurogenerative diseases caused by protein aggregation. Herein, we review the recent progress in chemical-mediated targeted protein degradation toward the discovery of drugs for neurogenerative diseases.


Physiology ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Lars Klimaschewski

Various studies identified the ubiquitin-proteasome system as the prime suspect in causing neurodegenerative diseases. The present review summarizes our current knowledge about the expression, regulation, and functions of this major protein degradation pathway in the brain, with particular reference to the pathogenesis of associated neurological diseases.


2020 ◽  
Author(s):  
Ganapathi Kandasamy ◽  
Ashis Kumar Pradhan ◽  
R Palanimurugan

AbstractDegradation of short-lived and abnormal proteins are essential for normal cellular homeostasis. In eukaryotes, such unstable cellular proteins are selectively degraded by the ubiquitin proteasome system (UPS). Furthermore, abnormalities in protein degradation by the UPS have been linked to several human diseases. Ccr4 protein is a known component of the Ccr4-Not complex, which has established roles in transcription, mRNA de-adenylation and RNA degradation etc. Excitingly in this study, we show that Ccr4 protein has a novel function as a shuttle factor that promotes ubiquitin-dependent degradation of short-lived proteins by the 26S proteasome. Using a substrate of the well-studied ubiquitin fusion degradation (UFD) pathway, we found that its UPS-mediated degradation was severely impaired upon deletion of CCR4 in Saccharomyces cerevisiae. Additionally, we show that Ccr4 binds to cellular ubiquitin conjugates and the proteasome. In contrast to Ccr4, most other subunits of the Ccr4-Not complex proteins are dispensable for UFD substrate degradation. From our findings we conclude that Ccr4 functions in the UPS as a shuttle factor targeting ubiquitylated substrates for proteasomal degradation.


Oncogene ◽  
2006 ◽  
Vol 26 (3) ◽  
pp. 441-448 ◽  
Author(s):  
L Sun ◽  
J S Trausch-Azar ◽  
A Ciechanover ◽  
A L Schwartz

2004 ◽  
Vol 165 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Laura Korhonen ◽  
Dan Lindholm

The ubiquitin proteasome system (UPS) contributes to the pathophysiology of neurodegenerative diseases, and it is also a major determinant of synaptic protein degradation and activity. Recent studies in rodents and in the fruit fly Drosophila have shown that the activity of the UPS is involved in axonal degeneration. Increased knowledge of the UPS in synaptic and axonal reactions may provide novel drug targets for treatments of neuronal injuries and neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document