Genomic impact of CRISPR immunization against bacteriophages

2013 ◽  
Vol 41 (6) ◽  
pp. 1383-1391 ◽  
Author(s):  
Rodolphe Barrangou ◽  
Anne-Claire Coûté-Monvoisin ◽  
Buffy Stahl ◽  
Isabelle Chavichvily ◽  
Florian Damange ◽  
...  

CRISPR (clustered regularly interspaced short palindromic repeats) together with cas (CRISPR-associated) genes form the CRISPR–Cas immune system, which provides sequence-specific adaptive immunity against foreign genetic elements in bacteria and archaea. Immunity is acquired by the integration of short stretches of invasive DNA as novel ‘spacers’ into CRISPR loci. Subsequently, these immune markers are transcribed and generate small non-coding interfering RNAs that specifically guide nucleases for sequence-specific cleavage of complementary sequences. Among the four CRISPR–Cas systems present in Streptococcus thermophilus, CRISPR1 and CRISPR3 have the ability to readily acquire new spacers following bacteriophage or plasmid exposure. In order to investigate the impact of building CRISPR-encoded immunity on the host chromosome, we determined the genome sequence of a BIM (bacteriophage-insensitive mutant) derived from the DGCC7710 model organism, after four consecutive rounds of bacteriophage challenge. As expected, active CRISPR loci evolved via polarized addition of several novel spacers following exposure to bacteriophages. Although analysis of the draft genome sequence revealed a variety of SNPs (single nucleotide polymorphisms) and INDELs (insertions/deletions), most of the in silico differences were not validated by Sanger re-sequencing. In addition, two SNPs and two small INDELs were identified and tracked in the intermediate variants. Overall, building CRISPR-encoded immunity does not significantly affect the genome, which allows the maintenance of important functional properties in isogenic CRISPR mutants. This is critical for the development and formulation of sustainable and robust next-generation starter cultures with increased industrial lifespans.

2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Anjan Venkatesh ◽  
Anthony L. Murray ◽  
Adrian B. Boyle ◽  
Lisa Quinn Farrington ◽  
Timothy J. Maher ◽  
...  

ABSTRACT Metschnikowia strain UCD127 was isolated from soil in Ireland and sequenced. It is a highly heterozygous diploid strain with 385,000 single nucleotide polymorphisms (SNPs). Its ribosomal DNA has the highest similarity to that of M. chrysoperlae, but its ACT1 and TEF1 loci and mitochondrial genome show affinity to those of M. fructicola, whose genome is significantly larger.


2019 ◽  
Vol 8 (35) ◽  
Author(s):  
Hideo Dohra ◽  
Kentaro Arai ◽  
Hidetoshi Urakawa ◽  
Taketomo Fujiwara

We report a draft genome sequence of Nitrosococcus oceani strain NS58, isolated from Tokyo Bay sediment. The genome sequence of strain NS58 was nearly identical (>99.99%) to those of other strains of N. oceani isolated from different ocean regions. Only nine single-nucleotide polymorphisms were identified between N. oceani ATCC 19707T and NS58.


2017 ◽  
Vol 5 (44) ◽  
Author(s):  
Sanjay S. Gautam ◽  
Micheál Mac Aogáin ◽  
Ronan F. O’Toole

ABSTRACT The spread of multidrug-resistant (MDR) tuberculosis (TB) has become a major global challenge. In 2016, Tasmania recorded its first known incidence of MDR-TB. Here, we report the draft whole-genome sequence of the Mycobacterium tuberculosis isolate from this case, TASMDR1, and describe single-nucleotide polymorphisms associated with its drug resistance.


2021 ◽  
Vol 149 ◽  
Author(s):  
Jing Wang ◽  
Mian Wang ◽  
Zihao Li ◽  
Xinyin Wu ◽  
Xian Zhang ◽  
...  

Abstract The aim of this study was to explore the impact of polymorphism of PD-1 gene and its interaction with tea drinking on susceptibility to tuberculosis (TB). A total of 503 patients with TB and 494 controls were enrolled in this case–control study. Three single-nucleotide polymorphisms of PD-1 (rs7568402, rs2227982 and rs36084323) were genotyped and unconditional logistic regression analysis was used to identify the association between PD-1 polymorphism and TB, while marginal structural linear odds models were used to estimate the interactions. Genotypes GA (OR 1.434), AA (OR 1.891) and GA + AA (OR 1.493) at rs7568402 were more prevalent in the TB patients than in the controls (P < 0.05). The relative excess risk of interaction (RERI) between rs7568402 of PD-1 genes and tea drinking was −0.3856 (95% confidence interval −0.7920 to −0.0209, P < 0.05), which showed a negative interaction. However, the RERIs between tea drinking and both rs2227982 and rs36084323 of PD-1 genes were not statistically significant. Our data demonstrate that rs7568402 of PD-1 genes was associated with susceptibility to TB, and there was a significant negative interaction between rs7568402 and tea drinking. Therefore, preventive measures through promoting the consumption of tea should be emphasised in the high-risk populations.


2015 ◽  
Vol 308 (9) ◽  
pp. C758-C766 ◽  
Author(s):  
Xinjun Cindy Zhu ◽  
Rafiquel Sarker ◽  
John R. Horton ◽  
Molee Chakraborty ◽  
Tian-E Chen ◽  
...  

Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na+/H+ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na+ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function.


2018 ◽  
Vol 47 (4) ◽  
pp. 1604-1616 ◽  
Author(s):  
Yan Fang ◽  
Na Gao ◽  
Xin Tian ◽  
Jun Zhou ◽  
Hai-Feng Zhang ◽  
...  

Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. Methods: We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. Results: We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. Conclusions: The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs.


2012 ◽  
Vol 40 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Tobias Hartmann ◽  
Mineko Terao ◽  
Enrico Garattini ◽  
Christian Teutloff ◽  
Joshua F. Alfaro ◽  
...  

Viruses ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 7 ◽  
Author(s):  
Vinícius da Silva Duarte ◽  
Sabrina Giaretta ◽  
Stefano Campanaro ◽  
Laura Treu ◽  
Andrea Armani ◽  
...  

Streptococcus thermophilus is considered one of the most important species for the dairy industry. Due to their diffusion in dairy environments, bacteriophages can represent a threat to this widely used bacterial species. Despite the presence of a CRISPR-Cas system in the S. thermophilus genome, some lysogenic strains harbor cryptic prophages that can increase the phage-host resistance defense. This characteristic was identified in the dairy strain S. thermophilus M17PTZA496, which contains two integrated prophages 51.8 and 28.3 Kb long, respectively. In the present study, defense mechanisms, such as a lipoprotein-encoding gene and Siphovirus Gp157, the last associated to the presence of a noncoding viral DNA element, were identified in the prophage M17PTZA496 genome. The ability to overexpress genes involved in these defense mechanisms under specific stressful conditions, such as phage attack, has been demonstrated. Despite the addition of increasing amounts of Mitomycin C, M17PTZA496 was found to be non-inducible. However, the transcriptional activity of the phage terminase large subunit was detected in the presence of the antagonist phage vB_SthS-VA460 and of Mitomycin C. The discovery of an additional immune mechanism, associated with bacteriophage-insensitive strains, is of utmost importance, for technological applications and industrial processes. To our knowledge, this is the first study reporting the capability of a prophage integrated into the S. thermophilus genome expressing different phage defense mechanisms. Bacteriophages are widespread entities that constantly threaten starter cultures in the dairy industry. In cheese and yogurt manufacturing, the lysis of Streptococcus thermophilus cultures by viral attacks can lead to huge economic losses. Nowadays S. thermophilus is considered a well-stablished model organism for the study of natural adaptive immunity (CRISPR-Cas) against phage and plasmids, however, the identification of novel bacteriophage-resistance mechanisms, in this species, is strongly desirable. Here, we demonstrated that the presence of a non-inducible prophage confers phage-immunity to an S. thermophilus strain, by the presence of ltp and a viral noncoding region. S. thermophilus M17PTZA496 arises as an unconventional model to study phage resistance and potentially represents an alternative starter strain for dairy productions.


2020 ◽  
Vol 47 (5) ◽  
pp. 385-395
Author(s):  
Brigitte K. Flesch ◽  
Angelika Reil ◽  
Núria Nogués ◽  
Carme Canals ◽  
Peter Bugert ◽  
...  

Background: The human neutrophil antigen 2 (HNA-2), which is expressed on CD177, is undetectable in 3–5% of the normal population. Exposure of these HNA-2null individuals to HNA-2-positive cells can cause immunization and pro­duction of HNA-2 antibodies, which can induce immune neutropenia and transfusion-related acute lung injury. In HNA-2-positive individuals, neutrophils are divided into a CD177pos. and a CD177neg. subpopulation. The molecular background of HNA-2 deficiency and the bimodal expression pattern, however, are not completely decoded. Study Design: An international collaboration was conducted on the genetic analysis of HNA-2-phenotyped blood samples, including HNA-2-deficient individuals, mothers, and the respective children with neonatal immune neutropenia and regular blood donors. Results: From a total of 54 HNA-2null individuals, 43 were homozygous for the CD177*787A>T substitution. Six carried the CD177*c.1291G>A single nucleotide polymorphism. All HNA-2-positive samples with >40% CD177pos. neutrophils carried the *787A wild-type allele, whereas a lower rate of CD177pos. neutrophils was preferentially associated with *c.787AT heterozygosity. Interestingly, only the *c.787A allele sequence was detected in complementary DNA (cDNA) sequence analysis carried out on all *c.787AT heterozygous individuals. However, cDNA analysis after sorting of CD177pos. and CD177neg. neutrophil subsets from HNA-2-positive individuals showed identical sequences, which makes regulatory elements within the promoter unlikely to affect CD177 gene transcription in different CD177 neutrophil subsets. Conclusion: This comprehensive study clearly demonstrates the impact of single nucleotide polymorphisms on the expression of HNA-2 on the neutrophil surface but challenges the hypothesis of regulatory epigenetic effects being implicated in the bimodal CD177 expression pattern.


Sign in / Sign up

Export Citation Format

Share Document