Lineage potential, plasticity and environmental reprogramming of epithelial stem/progenitor cells

2014 ◽  
Vol 42 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Alessandro W. Amici ◽  
Fatai O. Onikoyi ◽  
Paola Bonfanti

Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.

Nano LIFE ◽  
2019 ◽  
Vol 09 (03) ◽  
pp. 1941002
Author(s):  
Yanbin Fu ◽  
Zhiying He ◽  
Chao Zhang

Stem cell therapy is being developed as a promising novel strategy for the treatment of heart-associated diseases. Several types of cells such as skeletal myoblasts, bone marrow (BM) mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), adipose stem cells (ADSCs), cardiac progenitor cells (CPCs), induced pluripotent stem cells (iPSCs) have been tested in pre-clinical and clinical cardiac repairing models. Fibroblasts, as terminally differentiated cells, could also be trans-differentiated into cardiomyocytes in vitro. In this review, we will summarize the recent advances of cell types, potential applications and challenges of stem cell therapy in the treatment of heart failure.


2012 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Christian Homsy ◽  

The scale of cardiac diseases, and in particular heart failure and acute myocardial infarction, emphasises the need for radically new approaches, such as cell therapy, to address the underlying cause of the disease, the loss of functional myocardium. Stem cell-based therapies, whether through transplanted cells or directing innate repair, may provide regenerative approaches to cardiac diseases by halting, or even reversing, the events responsible for progression of organ failure. Cardio3 BioSciences, a leading Belgian biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac disease, was founded in this context in 2004. The company is developing a highly innovative cell therapy approach based on a platform designed to reprogramme the patient’s own stem cells into cardiac progenitor cells. The underlying rationale behind this approach is that, in order to reconstruct cardiac tissue, stem cells need to be specific to cardiac tissue. The key is therefore to provide cardiac-specific progenitor cells to the failing heart to induce cardiac repair.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Heuijoon Park ◽  
Sonali Lad ◽  
Kelsey Boland ◽  
Kelly Johnson ◽  
Nyssa Readio ◽  
...  

2005 ◽  
Vol 12 (1) ◽  
pp. 19-47 ◽  
Author(s):  
D M Peehl

This review focuses on primary cultures of human prostatic epithelial cells and their applications as models of normal and malignant biological behavior. Current abilities to culture cells from normal tissues, from premalignant dysplastic lesions (prostatic intraepithelial neoplasia), from primary adenocarcinomas, and from metastases are described. Evidence for representation of the interrelated cells of the normal prostatic epithelium — stem cells, basal epithelial cells, secretory epithelial cells, transit amplifying cells and neuroendocrine cells — in primary cultures is presented. Comparisons between normal and cancer-derived primary cultures are made regarding biological activities relevant to carcinogenesis, such as proliferation, apoptosis, differentiation, senescence, adhesion, migration, invasion, steroid hormone metabolism, other metabolic pathways and angiogenesis. Analyses of tumor suppressor activity, differential gene expression and cytogenetics in primary cultures have revealed changes relevant to prostate cancer progression. Preclinical studies with primary cultures have provided information useful for designing new strategies for chemoprevention, chemotherapy, cytotoxin therapy, radiation therapy, gene therapy and imaging. While the behavior of normal primary cultures is often used as a basis for comparison with established, immortal prostate cancer cell lines, the most informative studies are performed with donor-matched pairs of normal and malignant primary cultures, grown under identical conditions. Challenges that remain to be addressed if the full potential of primary cultures as a model system is to be realized include isolation, culture and characterization of stem cells, improved methodology to induce or maintain a fully differentiated, androgen-responsive phenotype, and identification of cell surface antigens or other markers with which to purify pure populations of live cancer or premalignant cells apart from non-malignant epithelial cells prior to culture.


2013 ◽  
Vol 125 (7) ◽  
pp. 319-327 ◽  
Author(s):  
Wei Eric Wang ◽  
Xiongwen Chen ◽  
Steven R. Houser ◽  
Chunyu Zeng

Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also have the capacity to differentiate into necessary cells to rebuild injured cardiac tissue. Both types of stem cells have brought promise for cardiac repair. The present review summarizes recent advances in cardiac cell therapy based on these two cell sources and discusses the advantages and limitations of each candidate. We conclude that, although both types of stem cells can be considered for autologous transplantation with promising outcomes in animal models, CS/PCs have advanced more in their clinical application because iPSCs and their derivatives possess inherent obstacles for clinical use. Further studies are needed to move cell therapy forward for the treatment of heart disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1397-1397
Author(s):  
Nadim Mahmud ◽  
Kazumi Yoshinaga ◽  
Craig Beam ◽  
Hiroto Araki

Abstract Widespread clinical use of ex-vivo expanded human umbilical cord blood (CB) grafts has been limited by lack of proper understanding of factors regulating self-renewal type of symmetric cell divisions. The expansion of the number of functional hematopoietic stem cells (HSC) ex-vivo requires the creation of an environment which favors symmetrical division. In our current studies, addition of late acting cytokines, (GM-CSF, IL-6, Epo) with early acting cytokines (thrombopoietin, SCF, Flt-3 ligand) resulted in loss of expansion of stem/progenitor cells. These data indicate that modification of HSC fate is not fully independent of external humoral influences. We have previously demonstrated that following treatment of CD34+ cells with 5-aza-2-deoxycytidine (5azaD) and trichostatin A (TSA) there is a 10- fold increase in the number of SCID mouse repopulating cells (SRC). This increase of SRC, however, occurred concomitantly with an increase in absolute number of CD34+CD90+ cells as well as primitive progenitors which gives rise to colony forming unit Mix lineage (CFU-Mix). We hypothesized that if the primary CD34+ cells generates CFU-Mix/CFU-GM in a ratio of ‘X’, then to observe a higher rate of symmetric cell division we would expect to see the ratio increased (>X) in the 5azaD/TSA treated cells in comparison to cells cultured in the absence of 5azaD/TSA (< X). Interestingly, analyses of our data suggest that when 5azaD/TSA treated CD34+ cells are cultured for 5 days and assayed for colonies we observed a significant increase in the ratio of CFU-Mix/CFU-GM in contrast to cells cultured in cytokines alone, 0.373 ± 0.06 and 0.066 ± 0.032 respectively. The ratio of CFU-Mix/CFU-GM of CB CD34+ cells (day 0) was 0.262 ± 0.045. These findings indicate that 5azaD/TSA treatment promotes the ratio of CFU-Mix/CFU-GM possibly by enhancing symmetric division of CFU-Mix while in the absence of 5azaD/TSA treatment the culture condition likely induces differentiation. In addition, we have also investigated the ratio of progenitor cells/differentiated cells by assessing the ratio of human CD34+ cells/CD33+ cells in the bone marrow of immunodeficient mice following transplantation (8 weeks) of equal numbers of CD34+ cells. The ratio of CD34+ cells/CD33+ cells following transplantation of 5azaD/TSA treated cells was 0.52 ± 0.14 (n = 11) while in the absence of 5azaD/TSA the ratio dropped to 0.31± 0.16 (n = 4). The ratio following transplantation of primary CD34+ (day 0) cells was 0.62 ± 0.14 (n = 6). These data suggest that 5azaD/TSA treated cells maintain the balance of generation of CD34+ cells/CD33+ cells at a comparable rate to that of primary CD34+ cells, while the CD34+ cells generated in the absence of 5azaD/TSA promotes generation of more differentiated cells. Alternatively, it is also possible that 5azaD/TSA treatment of CD34+ cells in the culture results in inhibition of myeloid differentiation at the cost of proliferation. However, the latter possibility is unlikely, since treatment of CB cells with 5azaD/TSA results in an increase in the absolute number of progenitors including SRC possessing both myeloid and lymphoid differentiation potential. Taken together, these data support our hypothesis that chromatin modifying agents in the culture is capable of promoting self-renewal type of symmetric cell division possessing in vivo multilineage marrow repopulating potential.


1985 ◽  
Vol 33 (7) ◽  
pp. 687-694 ◽  
Author(s):  
J F Nicolas ◽  
W Savino ◽  
A Reano ◽  
J Viac ◽  
J Brochier ◽  
...  

The mouse thymic epithelial network was studied using three different anti-keratin antibodies. One of these antibodies, KL1, exclusively recognized a small subset of medullary epithelial cells characterized by its content of a high molecular weight keratin (63 kD). Since epithelial differentiation is known to be associated with the acquisition of high molecular weight keratins, KL1-positive cells, which express the Ia antigen and secrete thymulin, may represent a subset of highly differentiated cells among mouse thymic epithelial cells (TEC). These data reflect the heterogeneity of the thymic epithelium and support the concept that distinct TEC subsets might provide the thymus with different microenvironments.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4882-4882
Author(s):  
Alison Domingues ◽  
Kamila Bujko ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
Mariusz Z Ratajczak

Background . There is an ongoing search for multipotent stem cells from umbilical cord blood (UCB) with trans-germ layer differentiation potential that can be employed in repairing damaged organs and also expanded into transplantable hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs). The existence of such cells in postnatal life could also revive the concept of hemangioblasts or hemangioblast-like cells in adult hematopoietic organs. Our group was the first to isolate a population of small CD34+CD133+lin-CD45- early-development stem cells from human hematopoietic tissues, including UCB. Based on the validated expression of early-development markers, these cells were named "very small embryonic-like stem cells" (VSELs, Circulation Res 2019; 124:208-210). Currently, more than 25 independent groups worldwide who have carefully followed the multicolor-staining cell-sorting strategy described by us (Current Protocols in Cytometry 2010, 9.29.1-9.29.15) have successfully isolated these cells and demonstrated their in vivo contribution to all three germ layer lineages. Thus, VSELs could be very useful in regenerative medicine in the field of angiogenesis, and UCB is an attractive source, with easy accessibility and tolerance to allogenic grafts. However, the low number of these cells in UCB and their quiescence are limiting factors. Therefore, in vitro differentiation of VSELs into endothelial progenitor cells (EPCs) would allow improvement in the ability to expand endothelial cells and could represent a clinically relevant alternative to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) for cell therapy without ethical problems and undesirable side effects. Hypothesis. We hypothesized that UCB-purified, very small, early-developmentCD34+lin-CD45-stem cells can be ex vivo expanded into functional EPCs. Materials and Methods. VSELs highly purified by FACS were expanded into EPCs in pro-angiogenic medium supplemented with mesodermic differentiation factors and then endothelial differentiation factors in the presence of nicotinamide and UM171. In parallel, we expanded EPCs from MNCs isolated from the same UCB units by employing a classical protocol (Methods in Enzymology 2008, 445:303-29). The EPC nature of the expanded VSEL-derived cells was confirmed by the expression of typical EPC markers as well as by in vitro angiogenic assays. Results. Our differentiation cocktail allowed us to differentiate and expand VSELs into EPCs. In our expansion medium (Figure 1), the very small, round VSELs smaller than 6 mm in diameter proliferated and differentaited over time into larger and extended cells with a cobblestone morphology similar to the EPC control cells, and we confirmed their endothelial characteristics by cytometry analysis. Like EPCs, VSEL-derived EPCs were positive for CD31, CD144, KDR, and CD105 and negative for mesenchymal surface markers, such as CD90. They also performed similarly to EPCs in classical vasculogenic tests, including adhesion, proliferation, migration, and tubulogenesis assays. Conclusions. This work shows, for the first time, efficient VSEL differentiation into functional endothelial cells with vasculogenic properties without the help of co-culture over feeder-layers or viral vectors in medium supplemented with nicotinamide and UM171. These findings allow us to propose these cells as an interesting cell therapy product. These results also reopen the question of the existence of hemangioblast-like cells in postnatal tissues. We are currently testing these cells in vivo in model of hind limb ischemia. Figure 1 Disclosures No relevant conflicts of interest to declare.


Author(s):  
Alireza Ebrahimi ◽  
Hanie Ahmadi ◽  
Zahra Pourfraidon Ghasrodashti ◽  
Nader Tanide ◽  
Reza Shahriarirad ◽  
...  

Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for  uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells,  a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.  


Sign in / Sign up

Export Citation Format

Share Document