scholarly journals Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition

2016 ◽  
Vol 44 (4) ◽  
pp. 1117-1134 ◽  
Author(s):  
Pawina Jiramongkolchai ◽  
Philip Owens ◽  
Charles C. Hong

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) family signalling pathway. Similar to TGF-β, the complex roles of BMPs in development and disease are demonstrated by their dichotomous roles in various cancers and cancer stages. Although early studies implicated BMP signalling in tumour suppressive phenotypes, the results of more recent experiments recognize BMPs as potent tumour promoters. Many of these complexities are becoming illuminated by understanding the role of BMPs in their contextual role in unique cell types of cancer and the impact of their surrounding tumour microenvironment. Here we review the emerging roles of BMP signalling in cancer, with a focus on the molecular underpinnings of BMP signalling in individual cancers as a valid therapeutic target for cancer prevention and treatment.

2006 ◽  
Vol 34 (3) ◽  
pp. 458-460 ◽  
Author(s):  
C.C. Rider

The TGF-β (transforming growth factor-β) cytokine superfamily in mammals contains some 30 members. These dimeric proteins are characterized by a strongly conserved cystine knot-based structure. They regulate the proliferation, differentiation and migration of many cell types, and therefore have important roles in morphogenesis, organogenesis, tissue maintenance and wound healing. Thus far, around one-quarter of these cytokines have been shown to bind to heparin and heparan sulphate. Well-established examples are the TGF-β isoforms 1 and 2, and the BMPs (bone morphogenetic proteins) -2 and -4. In studies in my laboratory, we have shown that GDNF (glial-cell-line-derived neurotrophic factor) and its close relatives neurturin and artemin bind to heparin and heparan sulphate with high affinity. We have reported previously that binding of GDNF is highly dependent on the presence of 2-O-sulphate groups. More recently, we and others have been investigating the heparin/heparan sulphate-binding properties of BMP-7, which is a representative of a distinct BMP subgroup from that of BMPs -2 and -4. Interestingly, several of the various specific BMP antagonist proteins also bind to heparin and heparan sulphate. Much remains to be learnt about the nature and role of glycosaminoglycan interactions in the TGF-β superfamily, but current work suggests that these cytokines do not share a single highly conserved heparin/heparan sulphate-binding site.


Open Biology ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 120060 ◽  
Author(s):  
Elizabeth M. Callery ◽  
Chong Yon Park ◽  
Xin Xu ◽  
Haitao Zhu ◽  
James C. Smith ◽  
...  

Transforming growth factor β superfamily members signal through Smad transcription factors. Bone morphogenetic proteins (BMPs) act via Smads 1, 5 and 8 and TGF-βs signal through Smads 2 and 3. The endocytic adaptor protein Eps15R, or ‘epidermal growth factor (EGF) receptor pathway substrate 15-related protein’ is a component of EGF signal transduction, mediating internalization of the EGF receptor. We show that it interacts with Smad proteins, is required for BMP signalling in animal caps and stimulates Smad1 transcriptional activity. This function resides in the Asp-Pro-Phe motif-enriched ‘DPF domain’ of Eps15R, which activates transcription and antagonizes Smad2 signalling. In living cells, Eps15R segregates into spatially distinct regions with different Smads, indicating an unrecognized level of Smad compartmentalization.


2010 ◽  
Vol 44 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Inga K Johnsen ◽  
Felix Beuschlein

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of ligands that impact on a multitude of biological processes including cell type specification, differentiation and organogenesis. Furthermore, a large body of evidence points towards important BMP-dependent mechanisms in tumorigenesis. In accordance with their diverse actions, BMPs have been demonstrated to serve as auto-, para- and endocrine modulators also in a number of hormonal systems. In this review, we highlight novel aspects of BMP-dependent regulatory networks that pertain to adrenal physiology and disease, which have been uncovered during recent years. These aspects include the role of BMP-dependent mechanism during adrenal development, modulating effects on catecholamine synthesis and steroidogenesis and dysregulation of BMP signalling in adrenal tumorigenesis. Furthermore, we summarize potential therapeutic approaches that are based on reconstitution of BMP signalling in adrenocortical tumour cells.


2020 ◽  
Author(s):  
Paul A. Humphreys ◽  
Steven Woods ◽  
Christopher A. Smith ◽  
Stuart A. Cain ◽  
Robert Lucas ◽  
...  

AbstractBone Morphogenetic Proteins (BMPs) are members of the Transforming Growth Factor β (TGFβ) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise perturbation of the BMP signalling pathway. Here, we develop a novel optogenetic BMP signalling system (optoBMP) that enables rapid induction of the canonical BMP signalling pathway through illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signalling pathway through variable light stimulation. Optogenetic control of BMP signalling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 634
Author(s):  
Bailee H. Sliker ◽  
Paul M. Campbell

Tumors are composed of not only epithelial cells but also many other cell types that contribute to the tumor microenvironment (TME). Within this space, cancer-associated fibroblasts (CAFs) are a prominent cell type, and these cells are connected to an increase in tumor progression as well as alteration of the immune landscape present in and around the tumor. This is accomplished in part by their ability to alter the presence of both innate and adaptive immune cells as well as the release of various chemokines and cytokines, together leading to a more immunosuppressive TME. Furthermore, new research implicates CAFs as players in immunotherapy response in many different tumor types, typically by blunting their efficacy. Fibroblast activation protein (FAP) and transforming growth factor β (TGF-β), two major CAF proteins, are associated with the outcome of different immunotherapies and, additionally, have become new targets themselves for immune-based strategies directed at CAFs. This review will focus on CAFs and how they alter the immune landscape within tumors, how this affects response to current immunotherapy treatments, and how immune-based treatments are currently being harnessed to target the CAF population itself.


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Claire Glister ◽  
Leanne Satchell ◽  
Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we comparedex vivoexpression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin orFSHRmRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2070
Author(s):  
Pasquale Esposito ◽  
Daniela Verzola ◽  
Daniela Picciotto ◽  
Leda Cipriani ◽  
Francesca Viazzi ◽  
...  

A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.


2000 ◽  
Vol 11 (3) ◽  
pp. 1023-1035 ◽  
Author(s):  
Lilach Gilboa ◽  
Anja Nohe ◽  
Tanja Geissendörfer ◽  
Walter Sebald ◽  
Yoav I. Henis ◽  
...  

The bone morphogenetic proteins (BMPs) play important roles in embryogenesis and normal cell growth. The BMP receptors belong to the family of serine/threonine kinase receptors, whose activation has been investigated intensively for the transforming growth factor-β (TGF-β) receptor subfamily. However, the interactions between the BMP receptors, the composition of the active receptor complex, and the role of the ligand in its formation have not yet been investigated and were usually assumed to follow the same pattern as the TGF-β receptors. Here we demonstrate that the oligomerization pattern of the BMP receptors is different and is more flexible and susceptible to modulation by ligand. Using several complementary approaches, we investigated the formation of homomeric and heteromeric complexes between the two known BMP type I receptors (BR-Ia and BR-Ib) and the BMP type II receptor (BR-II). Coimmunoprecipitation studies detected the formation of heteromeric and homomeric complexes among all the BMP receptor types even in the absence of ligand. These complexes were also detected at the cell surface after BMP-2 binding and cross-linking. Using antibody-mediated immunofluorescence copatching of epitope-tagged receptors, we provide evidence in live cells for preexisting heteromeric (BR-II/BR-Ia and BR-II/BR-Ib) and homomeric (BR-II/BR-II, BR-Ia/ BR-Ia, BR-Ib/ BR-Ib, and also BR-Ia/ BR-Ib) oligomers in the absence of ligand. BMP-2 binding significantly increased hetero- and homo-oligomerization (except for the BR-II homo-oligomer, which binds ligand poorly in the absence of BR-I). In contrast to previous observations on TGF-β receptors, which were found to be fully homodimeric in the absence of ligand, the BMP receptors show a much more flexible oligomerization pattern. This novel feature in the oligomerization mode of the BMP receptors allows higher variety and flexibility in their responses to various ligands as compared with the TGF-β receptors.


2004 ◽  
Vol 24 (6) ◽  
pp. 2546-2559 ◽  
Author(s):  
Joshua P. Frederick ◽  
Nicole T. Liberati ◽  
David S. Waddell ◽  
Yigong Shi ◽  
Xiao-Fan Wang

ABSTRACT Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor β (TGF-β) signal. The ability of the Smads to act as transcriptional activators via TGF-β-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-β target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-β-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-β, and this repression is required for the manifestation of the TGF-β cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-β-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-β inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.


Sign in / Sign up

Export Citation Format

Share Document