LARP6 proteins in plants

Author(s):  
Cécile Bousquet-Antonelli

RNA binding proteins, through control of mRNA fate and expression, are key players of organism development. The LARP family of RBPs sharing the La motif, are largely present in eukaryotes. They classify into five subfamilies which members acquired specific additional domains, including the RRM1 moiety which teams up with the La motif to form a versatile RNA binding unit. The LARP6 subfamily has had a peculiar history during plant evolution. While containing a single LARP6 in algae and non-vascular plants, they expanded and neofunctionalized into three subclusters in vascular plants. Studies from Arabidopsis thaliana, support that they acquired specific RNA binding properties and physiological roles. In particular LARP6C participates, through spatiotemporal control of translation, to male fertilization, a role seemingly conserved in maize. Interestingly, human LARP6 also acts in translation control and mRNA transport and similarly to LARP6C which is required for pollen tube guided elongation, is necessary to cell migration, through protrusion extension. This opens the possibility that some cellular and molecular functions of LARP6 were retained across eukaryote evolution. With their peculiar evolutionary history, plants provide a unique opportunity to uncover how La-module RNA binding properties evolved and identify species specific and basal roles of the LARP6 function. Deciphering of how LARP6, in particular LARP6C, acts at the molecular level, will foster novel knowledge on translation regulation and dynamics in changing cellular contexts. Considering the seemingly conserved function of LARP6C in male reproduction, it should fuel studies aimed at deriving crop species with improved seed yields.

2003 ◽  
Vol 23 (19) ◽  
pp. 7055-7067 ◽  
Author(s):  
Shelly A. Waggoner ◽  
Stephen A. Liebhaber

ABSTRACT Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The α-globin poly(C) binding proteins (αCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. αCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of αCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major αCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of αCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for αCP2 in this infantile neurodegenerative disease. Surprisingly, αCP2 mRNA itself was represented in αCP2-RNP complexes, suggesting autoregulatory control of αCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of αCP2 within their 3′ untranslated regions. These data expand the list of mRNAs that associate with αCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoaki Yanaizu ◽  
Chika Washizu ◽  
Nobuyuki Nukina ◽  
Jun-ichi Satoh ◽  
Yoshihiro Kino

Abstract Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.


Author(s):  
Dylan M. Parker ◽  
Lindsay P. Winkenbach ◽  
Samuel P. Boyson ◽  
Matthew N. Saxton ◽  
Camryn Daidone ◽  
...  

AbstractCaenorhabditis elegans early embryos generate cell-specific transcriptomes despite lacking active transcription. This presents an opportunity to study mechanisms of post-transcriptional regulatory control. In seeking the mechanisms behind this patterning, we discovered that some cell-specific mRNAs accumulate non-homogenously within cells, localizing to membranes, P granules (associated with progenitor germ cells in the P lineage), and P-bodies (associated with RNA processing). Transcripts differed in their dependence on 3’UTRs and RNA Binding Proteins, suggesting diverse regulatory mechanisms. Notably, we found strong but imperfect correlations between low translational status and P granule localization within the progenitor germ lineage. By uncoupling these, we untangled a long-standing question: Are mRNAs directed to P granules for translational repression or do they accumulate there as a downstream step? We found translational repression preceded P granule localization and could occur independent of it. Further, disruption of translation was sufficient to send homogenously distributed mRNAs to P granules. Overall, we show transcripts important for germline development are directed to P granules by translational repression, and this, in turn, directs their accumulation in the progenitor germ lineage where their repression can ultimately be relieved.SummaryMaternally loaded mRNAs localize non-homogeneously within C. elegans early embryos correlating with their translational status and lineage-specific fates.


2009 ◽  
Vol 20 (8) ◽  
pp. 2265-2275 ◽  
Author(s):  
Zhifa Shen ◽  
Nicolas Paquin ◽  
Amélie Forget ◽  
Pascal Chartrand

The transport and localization of mRNAs results in the asymmetric synthesis of specific proteins. In yeast, the nucleocytoplasmic shuttling protein She2 binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p–Myo4p complex. Although the cytoplasmic role of She2p in mRNA localization is well characterized, its nuclear function is still unclear. Here, we show that She2p contains a nonclassical nuclear localization signal (NLS) that is essential for its nuclear import via the importin α Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS leads to defective ASH1 mRNA localization and Ash1p sorting. Interestingly, these phenotypes mimic knockouts of LOC1 and PUF6, which encode for nuclear RNA-binding proteins that bind the ASH1 mRNA and control its translation. We find that She2p interacts with both Loc1p and Puf6p and that excluding She2p from the nucleus decreases this interaction. Absence of nuclear She2p disrupts the binding of Loc1p and Puf6p to the ASH1 mRNA, suggesting that nuclear import of She2p is necessary to recruit both factors to the ASH1 transcript. This study reveals that a direct coupling between localization and translation regulation factors in the nucleus is required for proper cytoplasmic localization of mRNAs.


2021 ◽  
Author(s):  
Xinyu Gu ◽  
Nicholas P Schafer ◽  
Peter G Wolynes

Translation of messenger RNA is regulated through a diverse set of RNA-binding proteins. A significant fraction of RNA-binding proteins contain prion-like domains which form functional prions. This raises the question of how prions can play a role in translational control. Local control of translation in dendritic spines by prions has been invoked in the mechanism of synaptic plasticity and memory. We show how channeling through diffusion and processive translation cooperate in highly ordered mRNA/prion aggregates as well as in less ordered mRNA/protein condensates depending on their substructure. We show the direction of translational control, whether it is repressive or activating, depends on the polarity of the mRNA distribution in mRNA/prion assemblies which determines whether vectorial channeling can enhance recycling of ribosomes. Our model also addresses the effect of changes of substrate concentration in assemblies that have been suggested previously to explain translation control by assemblies through the introduction of a potential of mean force biasing diffusion of ribosomes inside the assemblies. The results from the model are compared with the experimental data on translational control by two functional RNA-binding prions, CPEB involved in memory and Rim4 involved in gametogenesis.


2018 ◽  
Vol 62 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Nikolay Manavski ◽  
Lisa-Marie Schmid ◽  
Jörg Meurer

In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.


2010 ◽  
Vol 38 (4) ◽  
pp. 1122-1124 ◽  
Author(s):  
Matthias Soller ◽  
Min Li ◽  
Irmgard U. Haussmann

How RNA-binding proteins recognize their complement of targets in a complex cellular environment remains poorly understood. Sequence degeneracy and redundancy of short motifs at genomic scales have mostly eluded predictions of specific target genes for gene-specific ELAV (embryonic lethal abnormal visual system)/Hu proteins that bind ubiquitous AU-rich motifs. Using the genetic tools of Drosophila, we have analysed binding properties of ELAV in vitro and ELAV-dependent regulation of its major target ewg (erect wing) in neurons. These studies reveal that an integral part of ELAV gene-specific regulation involves combinatorial binding to variably spaced short U-rich motifs on an extensive binding site.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Patricia R. Araujo ◽  
Kihoon Yoon ◽  
Daijin Ko ◽  
Andrew D. Smith ◽  
Mei Qiao ◽  
...  

Translation regulation plays important roles in both normal physiological conditions and diseases states. This regulation requires cis-regulatory elements located mostly in 5′ and 3′ UTRs and trans-regulatory factors (e.g., RNA binding proteins (RBPs)) which recognize specific RNA features and interact with the translation machinery to modulate its activity. In this paper, we discuss important aspects of 5′ UTR-mediated regulation by providing an overview of the characteristics and the function of the main elements present in this region, like uORF (upstream open reading frame), secondary structures, and RBPs binding motifs and different mechanisms of translation regulation and the impact they have on gene expression and human health when deregulated.


NAR Cancer ◽  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Limin Jiang ◽  
Mingrui Duan ◽  
Fei Guo ◽  
Jijun Tang ◽  
Olufunmilola Oybamiji ◽  
...  

Abstract Binding motifs for transcription factors, RNA-binding proteins, microRNAs (miRNAs), etc. are vital for proper gene transcription and translation regulation. Sequence alteration mechanisms including single nucleotide mutations, insertion, deletion, RNA editing and single nucleotide polymorphism can lead to gains and losses of binding motifs; such consequentially emerged or vanished binding motifs are termed ‘somatic motifs’ by us. Somatic motifs have been studied sporadically but have never been curated into a comprehensive resource. By analyzing various types of sequence altering data from large consortiums, we successfully identified millions of somatic motifs, including those for important transcription factors, RNA-binding proteins, miRNA seeds and miRNA–mRNA 3′-UTR target motifs. While a few of these somatic motifs have been well studied, our results contain many novel somatic motifs that occur at high frequency and are thus likely to cause important biological repercussions. Genes targeted by these altered motifs are excellent candidates for further mechanism studies. Here, we present the first database that hosts millions of somatic motifs ascribed to a variety of sequence alteration mechanisms.


2007 ◽  
Vol 81 (16) ◽  
pp. 8396-8405 ◽  
Author(s):  
Paola Florez de Sessions ◽  
Elena Dobrikova ◽  
Matthias Gromeier

ABSTRACT Both untranslated regions (UTRs) of plus-strand RNA virus genomes jointly control translation and replication of viral genomes. In the case of the Enterovirus genus of the Picornaviridae family, the 5′UTR consists of a cloverleaf-like terminus preceding the internal ribosomal entry site (IRES) and the 3′ terminus is composed of a structured 3′UTR and poly(A). The IRES and poly(A) have been implicated in translation control, and all UTR structures, in addition to cis-acting genetic elements mapping to the open reading frame, have been assigned roles in RNA replication. Viral UTRs are recognized by viral and host cell RNA-binding proteins that may codetermine genome stability, translation, plus- and minus-strand RNA replication, and scaffolding of viral replication complexes within host cell substructures. In this report, we describe experiments with coxsackie B viruses with a cell type-specific propagation deficit in Sk-N-Mc neuroblastoma cells conferred by the combination of a heterologous IRES and altered 3′UTR. Serial passage of these constructs in Sk-N-Mc cells yielded genetic adaptation by mutations within the viral nonstructural proteins 3A and 3C. Our data implicate 3A and/or 3C or their precursors 3AB and/or 3CD in a functional complex with the IRES and 3′UTR that drives viral propagation. Adaptation to neuroblastoma cells suggests an involvement of cell type-specific host factors or the host cell cytoplasmic milieu in this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document