The Effect of Dichlorphenamide on Blood and Cerebrospinal Fluid Acid-Base State in Chronic Ventilatory Failure

1970 ◽  
Vol 39 (3) ◽  
pp. 391-406 ◽  
Author(s):  
D. J. Lane ◽  
J. B. L. Howell ◽  
T. B. Stretton

1. Pco2, [HCO−3] and [H+] have been measured in arterial blood and CSF in twenty-three patients with chronic airways obstruction and five patients without chest disease. 2. Through a range of Pco2 in the CSF from normal to 79 mmHg there was a direct linear relation between Pco2 and [H+]. The slope of this relation (0·41 nmol l−1 mmHg−1) was similar to that reported in experimental studies in animals and would appear to represent the extent to which regulatory mechanisms can protect CSF [H+] against the acidosis of chronic hypercapnia. 3. There was also a direct linear relation between CSF [HCO−3] and arterial plasma [HCO−3], the rise in [HCO−3] in the CSF being less than that in the blood. 4. Thirteen patients were re-studied after receiving the carbonic anhydrase inhibitor dichlorphenamide for 1 week. A metabolic acidosis developed in the arterial blood. In the CSF Pco2 and [HCO−3] fell but [H+] did not change. CSF [H+] is maintained constant and normal in other forms of chronic metabolic acidosis but it seems likely that the constancy observed in the present study was fortuitous. Possible reasons for this are discussed, and it is concluded that variability in responsiveness to ventilatory stimuli between patients is the most likely explanation.

1970 ◽  
Vol 33 (5) ◽  
pp. 498-505 ◽  
Author(s):  
R. Zupping

✓ Acid-base and gas parameters of CSF, jugular venous and arterial blood were measured in 45 patients with brain injury in the first 12 days after trauma or operation. CSF metabolic acidosis together with respiratory alkalosis and hypoxemia in the cerebral venous and arterial blood were the most characteristic findings. A close correlation between the severity of brain damage and the intensity of the CSF metabolic acidosis and arterial hypocapnia was revealed. It was concluded that brain hypoxia and acidosis play an important role in the development of cerebral edema and permanent brain damage.


PEDIATRICS ◽  
1975 ◽  
Vol 56 (6) ◽  
pp. 999-1004
Author(s):  
Daniel C. Shannon ◽  
Robert De Long ◽  
Barry Bercu ◽  
Thomas Glick ◽  
John T. Herrin ◽  
...  

The initial acid-base status of eight survivors of Reye's syndrome was characterized by acute respiratory alkalosis (Pco2=32 mm Hg; Hco3-= 22.0 mEq/liter) while that of eight children who died was associated with metabolic acidosis as well (HCO3-=10.0 mEq/liter). Arterialinternal jugular venous ammonia concentration differences on day 1 (299 mg/100 ml) and day 2 (90 mg/ 100 ml) reflected cerebral uptake of ammonia while those on days 3 and 4 (-43 and -55 mg/100 ml) demonstrated cerebral release. Arterial blood hyperammonemia can be detoxified safely in the brain as long as the levels do not exceed approximately 300µg/100 ml. Beyond that level lactic acidosis is observed, particularly in cerebral venous drainage. Arterial blood hyperammonemia was also related to the extent of alveolar hyperventilation. These findings are very similar to those seen in experimental hyperammonemia and support the concept that neurotoxicity in children with Reye's syndrome is at least partly due to impaired oxidative metabolism secondary to hyperammonemia.


PEDIATRICS ◽  
1980 ◽  
Vol 65 (5) ◽  
pp. 1006-1006

In the article "A Diagnostic Approach to Metabolic Acidosis in Children" by Kappy and Morrow (Pediatrics 65:351-356, 1980) on p 351 under "Normal Acid-Base Physiology" the normal arterial blood pH is maintained at 7.40 (H+ = 39.8 nEq/liter not mEq/liter.


1981 ◽  
Vol 51 (2) ◽  
pp. 276-281 ◽  
Author(s):  
S. Javaheri ◽  
A. Clendening ◽  
N. Papadakis ◽  
J. S. Brody

It has been thought that the blood-brain barrier is relatively impermeable to changes in arterial blood H+ and OH- concentrations. We have measured the brain surface pH during 30 min of isocapnic metabolic acidosis or alkalosis induced by intravenous infusion of 0.2 N HCl or NaOH in anesthetized dogs. The mean brain surface pH fell significantly by 0.06 and rose by 0.04 pH units during HCl or NaOH infusion, respectively. Respective changes were also observed in the calculated cerebral interstitial fluid [HCO-3]. There were no significant changes in cisternal cerebrospinal fluid acid-base variables. It is concluded that changes in arterial blood H+ and OH- concentrations are reflected in brain surface pH relatively quickly. Such changes may contribute to acute respiratory adaptations in metabolic acidosis and alkalosis.


1989 ◽  
Vol 256 (6) ◽  
pp. G1036-G1040 ◽  
Author(s):  
G. M. Feldman

Rats fed NH4Cl (5 meq.100 g body wt-1.day-1) for one week developed chronic metabolic acidosis and had an arterial blood pH and plasma HCO3- concentration of 7.27 +2- 0.02 and 16.2 +/- 0.8 meq/l, respectively; control animals had values of 7.36 +/- 0.01 and 22.4 +/- 0.5 meq/l, respectively. Net electrolyte transport was measured in proximal and distal colonic segments by in situ perfusion. In proximal colon, chronic metabolic acidosis increased HCO3- absorption from 3.3 +/- 0.8 to 6.4 +/- 0.6 mu eq.min-1.g-1 but did not alter Na+ absorption. In distal colon, although Na+ transport was unaffected, chronic acidosis reduced HCO3- secretion from -6.9 +/- 0.8 to -4.4 +/- 0.7 mu eq.min-1.g-1 and increased voltage from -18.9 +/- 2.0 to -51.1 +/- 4.2 mV. To evaluate the dependence of these effects on altered arterial pH and HCO3- concentration, NaHCO3 was infused intravenously, raising pH and HCO3- concentration to 7.53 +/- 0.04 and 23.9 +/- 1.7 meq/l, respectively. Although acute correction of chronic metabolic acidosis reduced HCO3- absorption in proximal colon, it did not affect HCO3- secretion or voltage in the distal segment, suggesting that proximal and distal colon respond differently to chronic metabolic acidosis. These results also suggest that chronic metabolic acidosis alters the mechanisms of ion transport in distal colon.


2002 ◽  
Vol 282 (2) ◽  
pp. F341-F351 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Weidong Wang ◽  
Ira Kurtz ◽  
Jørgen Frøkiær ◽  
...  

Several members of the Na-HCO[Formula: see text] cotransporter (NBC) family have recently been identified functionally and partly characterized, including rkNBC1, NBCn1, and NBC3. Regulation of these NBCs may play a role in the maintenance of intracellular pH and in the regulation of renal acid-base balance. However, it is unknown whether the expressions of these NBCs are regulated in response to changes in acid-base status. We therefore tested whether chronic metabolic acidosis (CMA) affects the abundance of these NBCs in kidneys using two conventional protocols. In protocol 1, rats were treated with NH4Cl in their drinking water (12 ± 1 mmol · rat−1 · day−1) for 2 wk with free access to water ( n = 8). Semiquantitative immunoblotting demonstrated that whole kidney abundance of NBCn1 and NBC3 in rats with CMA was dramatically increased to 995 ± 87 and 224 ± 35%, respectively, of control levels ( P < 0.05), whereas whole kidney rkNBC1 was unchanged (88 ± 14%). In protocol 2, rats were given NH4Cl in their food (10 ± 1 mmol · rat−1 · day−1) for 7 days, with a fixed daily water intake ( n = 6). Consistent with protocol 1, whole kidney abundances of NBCn1 (262 ± 42%) and NBC3 (160 ± 31%) were significantly increased compared with controls ( n = 6), whereas whole kidney rkNBC1 was unchanged (84 ± 17%). In both protocols, immunocytochemistry confirmed upregulation of NBCn1 and NBC3 with no change in the segmental distribution along the nephron. Consistent with the increase in NBCn1, measurements of pH transients in medullary thick ascending limb (mTAL) cells in kidney slices revealed two- to threefold increases in DIDS- sensitive, Na+-dependent HCO[Formula: see text] uptake in rats with CMA. In conclusion, CMA is associated with a marked increase in the abundance of NBCn1 in the mTAL and NBC3 in intercalated cells, whereas the abundance of NBC1 in the proximal tubule was not altered. The increased abundance of NBCn1 may play a role in the reabsorption of NH[Formula: see text] in the mTAL and increased NBC3 in reabsorbing HCO[Formula: see text].


1986 ◽  
Vol 70 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Norman L. M. Wong ◽  
Gary A. Quamme ◽  
John H. Dirks

1. Clearance and micropuncture studies were performed in four groups of acutely thyropara-thyroidectomized animals to study the effects of alkalosis and acidosis on the renal handling of magnesium. 2. Our results indicate that chronic metabolic acidosis reduces, whereas acute metabolic alkalosis enhances, magnesium reabsorption. 3. The site within the nephron where absorption of magnesium increases or decreases during acid-base disturbances was beyond the late proximal tubule. 4. Tubular fluid bicarbonate was also measured in these experiments, and the results indicated that magnesium reabsorption in the distal tubule correlated to bicarbonate delivery. However, whether this was a direct or an indirect effect of bicarbonate on magnesium transport could not be delineated.


1985 ◽  
Vol 63 (12) ◽  
pp. 1570-1576
Author(s):  
Mitchell L. Halperin ◽  
Ching B. Chen ◽  
Surinder Cheema-Dhadli

It appears that glutamine and lactate are the principal substrates for the kidney in dogs with chronic metabolic acidosis. Accordingly, the purpose of this study was to determine if a higher or lower rate of renal lactate extraction would influence the rate of glutamine extraction at a constant rate of renal ATP turnover. The blood lactate concentration was 0.9 ± 0.01 mM in 15 acidotic dogs. However, eight dogs with chronic metabolic acidosis had a spontaneous blood lactate concentration of 0.5 mM or lower. The kidneys of these dogs extracted considerably less lactate from the arterial blood (19 vs. 62 μmol/100 mL glomerular filtration rate (GFR)). Nevertheless, glutamine, alanine, citrate, and ammonium metabolism were not significantly different in these two groups of dogs. Renal ATP balance in acidotic dogs with a low blood lactate could only be achieved if a substrate other than additional glutamine were oxidized in that segment of the nephron which normally oxidized lactate; presumably a fat-derived substrate and (or) lactate derived from glucose was now the metabolic fuel at these more distal sites. When the blood lactate concentration was greater than 1.9 mM, lactate extraction rose to 219 μmol/100 mL GFR. Glutamine, alanine, citrate, and ammonium metabolism were again unchanged; in this case, ATP balance required substrate flux to products other than carbon dioxide, presumably, gluconeogenesis. It appears that renal ammoniagenesis is a proximal event and is independent of the rate of renal lactate extraction.


1986 ◽  
Vol 251 (5) ◽  
pp. F904-F910 ◽  
Author(s):  
W. R. Adam ◽  
A. P. Koretsky ◽  
M. W. Weiner

Renal intracellular pH (pHi) was measured in vivo from the chemical shift (sigma) of inorganic phosphate (Pi), obtained by 31P-nuclear magnetic resonance spectroscopy (NMR). pH was calculated from the difference between sigma Pi and sigma alpha-ATP. Changes of sigma Pi closely correlated with changes of sigma monophosphoesters; this supports the hypothesis that the pH determined from sigma Pi represents pHi. Renal pH in control rats was 7.39 +/- 0.04 (n = 8). This is higher than pHi of muscle and brain in vivo, suggesting that renal Na-H antiporter activity raises renal pHi. To examine the relationship between renal pH and ammoniagenesis, rats were subjected to acute (less than 24 h) and chronic (4-7 days) metabolic acidosis, acute (20 min) and chronic (6-8 days) respiratory acidosis, and dietary potassium depletion (7-21 days). Acute metabolic and respiratory acidosis produced acidification of renal pHi. Chronic metabolic acidosis (arterial blood pH, 7.26 +/- 0.02) lowered renal pHi to 7.30 +/- 0.02, but chronic respiratory acidosis (arterial blood pH, 7.30 +/- 0.05) was not associated with renal acidosis (pH, 7.40 +/- 0.04). At a similar level of blood pH, pHi was higher in chronic metabolic acidosis than in acute metabolic acidosis, suggesting an adaptive process that raises pHi. Potassium depletion (arterial blood pH, 7.44 +/- 0.05) was associated with a marked renal acidosis (renal pH, 7.17 +/- 0.02). There was a direct relationship between renal pH and cardiac K+. Rapid partial repletion with KCl (1 mmol) significantly increased renal pHi from 7.14 +/- 0.03 to 7.31 +/- 0.01.(ABSTRACT TRUNCATED AT 250 WORDS)


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248264
Author(s):  
Sancho Rodríguez-Villar ◽  
Paloma Poza-Hernández ◽  
Sascha Freigang ◽  
Idoia Zubizarreta-Ormazabal ◽  
Daniel Paz-Martín ◽  
...  

Background Point-of-care arterial blood gas (ABG) is a blood measurement test and a useful diagnostic tool that assists with treatment and therefore improves clinical outcomes. However, numerically reported test results make rapid interpretation difficult or open to interpretation. The arterial blood gas algorithm (ABG-a) is a new digital diagnostics solution that can provide clinicians with real-time interpretation of preliminary data on safety features, oxygenation, acid-base disturbances and renal profile. The main aim of this study was to clinically validate the algorithm against senior experienced clinicians, for acid-base interpretation, in a clinical context. Methods We conducted a prospective international multicentre observational cross-sectional study. 346 sample sets and 64 inpatients eligible for ABG met strict sampling criteria. Agreement was evaluated using Cohen’s kappa index, diagnostic accuracy was evaluated with sensitivity, specificity, efficiency or global accuracy and positive predictive values (PPV) and negative predictive values (NPV) for the prevalence in the study population. Results The concordance rates between the interpretations of the clinicians and the ABG-a for acid-base disorders were an observed global agreement of 84,3% with a Cohen’s kappa coefficient 0.81; 95% CI 0.77 to 0.86; p < 0.001. For detecting accuracy normal acid-base status the algorithm has a sensitivity of 90.0% (95% CI 79.9 to 95.3), a specificity 97.2% (95% CI 94.5 to 98.6) and a global accuracy of 95.9% (95% CI 93.3 to 97.6). For the four simple acid-base disorders, respiratory alkalosis: sensitivity of 91.2 (77.0 to 97.0), a specificity 100.0 (98.8 to 100.0) and global accuracy of 99.1 (97.5 to 99.7); respiratory acidosis: sensitivity of 61.1 (38.6 to 79.7), a specificity of 100.0 (98.8 to 100.0) and global accuracy of 98.0 (95.9 to 99.0); metabolic acidosis: sensitivity of 75.8 (59.0 to 87.2), a specificity of 99.7 (98.2 to 99.9) and a global accuracy of 97.4 (95.1 to 98.6); metabolic alkalosis sensitivity of 72.2 (56.0 to 84.2), a specificity of 95.5 (92.5 to 97.3) and a global accuracy of 93.0 (88.8 to 95.3); the four complex acid-base disorders, respiratory and metabolic alkalosis, respiratory and metabolic acidosis, respiratory alkalosis and metabolic acidosis, respiratory acidosis and metabolic alkalosis, the sensitivity, specificity and global accuracy was also high. For normal acid-base status the algorithm has PPV 87.1 (95% CI 76.6 to 93.3) %, and NPV 97.9 (95% CI 95.4 to 99.0) for a prevalence of 17.4 (95% CI 13.8 to 21.8). For the four-simple acid-base disorders and the four complex acid-base disorders the PPV and NPV were also statistically significant. Conclusions The ABG-a showed very high agreement and diagnostic accuracy with experienced senior clinicians in the acid-base disorders in a clinical context. The method also provides refinement and deep complex analysis at the point-of-care that a clinician could have at the bedside on a day-to-day basis. The ABG-a method could also have the potential to reduce human errors by checking for imminent life-threatening situations, analysing the internal consistency of the results, the oxygenation and renal status of the patient.


Sign in / Sign up

Export Citation Format

Share Document