Influence of amino acid administration on whole-body leucine kinetics and resting metabolic rate in postabsorptive normal subjects

1988 ◽  
Vol 75 (3) ◽  
pp. 225-231 ◽  
Author(s):  
P. J. Pacy ◽  
J. S. Garrow ◽  
G. C. Ford ◽  
H. Merritt ◽  
D. Halliday

1. We have investigated the effect of an amino acid mixture (Varnin 14; 57.4 ±10.2 μmol h−1 kg−1) on whole-body leucine kinetics, calculated by a steady-state reciprocal pool model, and resting metabolic rate in eight postabsorptive normal subjects. 2. Vamin 14 infusion increased whole-body leucine flux (P < 0.001), leucine employed for protein synthesis (P < 0.001), leucine oxidation (P < 0.001), metabolic clearance rate of α-ketoisocaproic acid (P < 0.05) and levels of all three branched-chain amino acids (P < 0.001) compared with the basal situation. In contrast, whole-body proteolysis was reduced (P < 0.05). 3. Resting metabolic rate was increased during Vamin 14 infusion (P < 0.05) and was positively correlated with whole-body protein synthesis (n = 16, r = 0.6342, P < 0.01; y = 0.605x + 173.7), as was the change in metabolic rate with the change in protein synthesis (n = 8, r = 0.772, P < 0.05; y = 0.493x − 10.85). 4. Overall, Vamin 14 infusion was associated with increased blood glucose (P < 0.001), although the observed increase in plasma glucagon (t = 2.012) and plasma insulin (t = 1.683) failed to reach statistical significance. 5. These data lend a measure of support to the hypothesis that the apparent increase in whole-body protein synthesis in insulin-dependent diabetic (type I) subjects during insulin withdrawal may be substrate related.

1990 ◽  
Vol 78 (6) ◽  
pp. 621-628 ◽  
Author(s):  
F. Carli ◽  
J. Webster ◽  
V. Ramachandra ◽  
M. Pearson ◽  
M. Read ◽  
...  

1. The present study was designed in an attempt to resolve conflicting views currently in the literature relating to the effect of surgery on various aspects of protein metabolism. 2. Sequential post-operative (2, 4 and 6 days) changes in whole-body protein turnover, forearm arteriovenous difference of plasma amino acids, glucose, lactate and free fatty acids, muscle concentration of free amino acids, RNA and protein, urinary nitrogen and 3-methylhistidine, plasma concentrations of insulin, cortisol and growth hormone, and resting metabolic rate, were measured in six patients undergoing uncomplicated elective total abdominal hysterectomy. 3. All patients received a constant daily diet, either orally or intravenously, based on 0.1 g of nitrogen/kg and an energy content of 1.1 times the resting metabolic rate for 7 days before and 6 days after surgery. 4. Whole-body protein turnover, synthesis and breakdown increased significantly 2 days after surgery (P <0.05) and returned towards pre-operative levels thereafter. 5. Forearm release of branched-chain amino acids and alanine, and efflux of glucose and lactate, were enhanced 4 days after surgery (P <0.05). Muscle glutamine and alanine concentrations were decreased on the fourth and sixth days after surgery (P <0.05). The RNA/protein ratio (indicating the capacity for protein synthesis) was unaltered. 6. A significant increase in urinary nitrogen and 3-methylhistidine was observed on days 3 and 4 after surgery (P <0.05). Thereafter, these parameters remained elevated, although failing to reach statistical significance. 7. The resting metabolic rate was significantly increased (P <0.05) 2 days after surgery but the respiratory quotient (0.77) was unchanged. 8. These data support the contention that whole-body protein synthesis and breakdown increase after surgery. Differences observed pre- and post-operatively between leucine kinetic estimates and other methods of quantifying protein metabolism indicate that only like methodologies should be compared.


1994 ◽  
Vol 86 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Paul J. Pacy ◽  
Gill M. Price ◽  
David Halliday ◽  
Marcello R. Quevedo ◽  
D. Joe Millward

1. The diurnal changes in whole body protein turnover associated with the increasing fasting body nitrogen (N) losses and feeding gains with increasing protein intake were investigated in normal adults. [13C]Leucine, [2H5]phenylalanine and [2H2]tyrosine kinetics, were measured during an 8h primed, continuous infusion during the fasting and feeding phase together with fed-state N turnover assessed with [15N]glycine after 12 days of adaptation to diets containing 0.36 (LP), 0.77 (MP), 1.59 (GP) and 2.07 (HP) g of protein day−1 kg−1. Measurements were also made of fasting and fed resting metabolic rate and plasma hormone levels. 2. Resting metabolic rate in the fasted and fed state was not influenced by dietary protein intake, but was increased by feeding (11-13%, P <0.01) with no influence of dietary protein concentration. Fasting plasma insulin levels were not influenced by protein intake and were increased by feeding independent of protein intake. Fasted but not fed values of insulinlike growth factor-1 increased with protein intake, although no feeding response was observed. Thyroid hormones (free and total tri-iodothyronine) did not change in any state. 3. For leucine with increasing protein intake the increasing fasting losses reflected increasing rates of protein degradation, although the changes were small and only significant between GP and MP intakes. The increasing leucine gain on feeding was associated with increasing rates of protein synthesis and falling rates of protein degradation, reflecting a progressive inhibition of degradation with feeding, and a change from inhibition of synthesis (LP diet) to stimulation (GP and HP diets). Mean daily rates of synthesis and degradation did not change with protein intake. 4. Phenylalanine and tyrosine kinetics were calculated from adjusted values based on leucine kinetics and published data of the hepatic/plasma enrichment ratio. With the increased protein intake, the increasing fasting losses of phenylalanine (GP > MP) were mediated by increasing rates of degradation (paired t-tests). The increasing phenylalanine gain (GP > MP > LP) was due to increasing fed-state rates of synthesis and falling rates of degradation, reflecting a progressive inhibition of degradation, a stimulation of hydroxylation and a variable response of synthesis ranging from inhibition at the lowest intake to stimulation at higher intakes. For tyrosine a similar progressive inhibition of degradation with intake was shown. Mean daily rates of synthesis and degradation (phenylalanine) and degradation (tyrosine) did not change with protein intake. 5. Estimation of protein turnover from 15N excretion in urea and ammonia during 9 h after 1 h intravenous infusion of [15N]glycine in the fed state on the LP, MP and GP diets indicated that neither synthesis nor degradation were influenced by dietary protein level. Synthesis estimated from 15N kinetics was significantly correlated with that determined from leucine kinetics (r = 0.78, n = 14, P <0.01) and from phenylalanine kinetics (r = 0.53, n = 14, P <0.05), and degradation estimated from 15N kinetics was significantly correlated with that determined from leucine kinetics (r = 0.60, n = 14, P <0.05). Thus the [15N]glycine, [13C]leucine and [2H5]phenylalanine methods gave broadly comparable results. 6. We conclude that the feeding response of protein synthesis, degradation and amino acid oxidation reflects the combined impact of insulin and tissue amino acid levels with insulin inhibiting degradation and with amino acids both stimulating synthesis and oxidation and also further inhibiting degradation. Although the dietary protein level influences the extent of these feeding responses, it does not influence the mean daily rate of protein turnover. The rate of whole body protein turnover per se is unlikely to provide an indicator of protein nutritional status.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1993 ◽  
Vol 265 (3) ◽  
pp. E402-E413 ◽  
Author(s):  
S. Tesseraud ◽  
J. Grizard ◽  
E. Debras ◽  
I. Papet ◽  
Y. Bonnet ◽  
...  

Early lactating goats show insulin resistance with respect to extramammary glucose utilization. However, much less is known about the two major factors, insulin and plasma amino acid concentration, that regulate protein metabolism in lactating goats. To examine this question, the in vivo effect of acute insulin was studied in goats during early lactation (12-31 days postpartum), midlactation (98-143 days postpartum), and the dry period (approximately 1 yr postpartum). Insulin was infused (at 0.36 or 1.79 nmol/min) under euglycemic and eukaliemic clamps. In addition, appropriate amino acid infusion was used to blunt insulin-induced hypoaminoacidemia or to create hyperaminoacidemia and maintain this condition under insulin treatment. Leucine kinetics were assessed using a primed continuous infusion of L-[1-14C]-leucine, which started 2.5 h before insulin. In all animals the insulin treatments failed to stimulate the nonoxidative leucine disposal (an estimate of whole body protein synthesis) under both euaminoacidemic and hyperaminoacidemic conditions. Thus, in goat as well as humans, infusion of insulin fails to stimulate protein synthesis even when combined with a substantially increased provision of amino acids. In contrast, insulin treatments caused a dose-dependent inhibition of the endogenous leucine appearance (an estimate of whole body protein degradation). Under euaminoacidemia the initial slope from the plot of the endogenous leucine appearance as a function of plasma insulin (an insulin sensitivity index) was steeper during early lactation than when compared with the dry period. A similar trend occurred during midlactation but not to any significant degree. These differences were abolished under hyperaminoacidemia. It was concluded that the ability of physiological insulin to inhibit protein degradation was improved during lactation, demonstrating a clear-cut dissociation between the effects of insulin on protein and glucose metabolism. This adaptation no doubt may provide a mechanism to save body protein.


1994 ◽  
Vol 86 (4) ◽  
pp. 441-446 ◽  
Author(s):  
M. J. Soares ◽  
L. S. Piers ◽  
P. S. Shetty ◽  
A. A. Jackson ◽  
J. C. Waterlow

1. Two groups of adult men were studied in Bangalore, India, under identical conditions: the ‘normal weight’ subjects (mean body mass index 20.8 kg/m2) were medical students of the institute with access to habitual energy and protein intakes ad libitum. The other group, designated ‘undernourished’, were labourers on daily wages (mean body mass index 16.7 kg/m2). 2. In an earlier study we obtained lower absolute values for both basal metabolic rate and protein synthesis in the undernourished subjects; however, when the data were expressed on a body weight or fat-free mass basis, a trend towards higher rates of protein synthesis, as well as higher basal metabolic rate, was evident. The suggestion was made that such results reflected the relatively higher energy intakes per kg body weight of the undernourished subjects on the day of study. The objective of the present study was therefore to control for the dietary intake during the measurement of whole body protein turnover. 3. In the present study dietary intakes were equated on a body weight basis; however, expressed per kg fat-free mass, the normal weight subjects had received marginally higher intakes of energy and protein. The results, however, were similar to those of the previous study. In absolute terms, basal metabolic rate, protein synthesis and breakdown were lower in the undernourished subjects. When expressed per kg body weight or per kg fat-free mass, the undernourished subjects had higher basal metabolic rates than the well-nourished subjects, whereas no differences were seen in the rate of protein synthesis or breakdown. 4. Estimates of muscle mass, based on creatinine excretion, indicated that the undernourished subjects had a higher proportion of non-muscle to muscle mass. Nitrogen flux (Q) was determined from 15N abundance in two end products, urea (Qu) and ammonia (Qa). The ratio Qu/Qa was increased in the undernourished subjects and was significantly correlated with the ratio of non-muscle to muscle mass (r = 0.81; P < 0.005). These results fit in with our earlier suggestion of a greater proportion of non-muscle (visceral) mass in undernourished subjects. 5. The present data suggest that there are no changes in the rate of protein synthesis or breakdown in chronic undernutrition when results are expressed, conventionally, per kg fat-free mass. It can be theoretically shown, however, that there could be a 15% reduction in the rate of turnover of the visceral tissues in chronic undernutrition. This, together with the reduced urinary nitrogen excretion, would contribute to nitrogen economy in these individuals.


1997 ◽  
Vol 77 (6) ◽  
pp. 885-896 ◽  
Author(s):  
Isabelle Papet ◽  
Piotr Ostaszewski ◽  
Francoise Glomot ◽  
Christiane Obled ◽  
Magali Faure ◽  
...  

AbstractThe effect of a high dose of 3-hydroxy-3-methylbutyrate (HMB, a leucine catabolite) on protein metabolism was investigated in growing male lambs fed on hay and concentrate. Concentrate was supplemented with either Ca(HMB)2 (4g/kg) or Ca(C03)2 in experimental (HMB) and control groups respectively. Both groups consisted of six 2-month old lambs. Three complementary methods to study protein metabolism were carried out consecutively 2·5 months after beginning the dietary treatment: whole body phenylalanine fluxes, postprandial plasma free amino acid time course and fractional rates of protein synthesis in skeletal muscles. Feeding a high dose of HMB led to a significant increase in some plasma free amino acids compared with controls. Total, oxidative and non-oxidative phenylalanine fluxes were not modified by dietary HMB supplementation. Similarly, an acute infusion of HMB, in the control group, did not change these fluxes. In skeletal muscles, fractional rates of protein synthesis were not affected by long-term dietary supplementation with HMB. Taken together our results showed that administration of a high dose of HMB to lambs was able to modify plasma free amino acid pattern without any effect on whole-body protein turnover and skeletal muscle protein synthesis


1990 ◽  
Vol 258 (6) ◽  
pp. E990-E998 ◽  
Author(s):  
S. Welle ◽  
K. S. Nair

This study examined whether variability among healthy young adults in resting metabolic rate, normalized for the amount of metabolically active tissue (assessed by total body potassium), is related to protein turnover. Resting metabolic rate was measured by indirect calorimetry for 2 h in 26 men and 21 women, 19-33 yr old, with simultaneous estimation of protein turnover during a 4-h infusion of L-[1-13C]leucine. After adjusting metabolic rate for total body potassium, the standard deviation was only 89 kcal/day, or 5.5% of the average value. There was a high correlation between leucine flux (an index of proteolysis) and metabolic rate (r = 0.84) and between the nonoxidized portion of leucine flux (an index of protein synthesis) and metabolic rate (r = 0.83). This relationship was weaker, but still significant, after adjusting leucine metabolism and metabolic rate for total body potassium (r = 0.36 for leucine flux vs. metabolic rate, r = 0.33 for nonoxidized portion of leucine flux vs. metabolic rate, P less than 0.05). The regression analysis suggested that the contribution of protein turnover to resting metabolic rate was approximately 20% in an average subject. Metabolic rate and protein turnover were highest in the subjects with the greatest amount of body fat, even after accounting for differences in whole body potassium. Neither resting metabolic rate nor protein turnover was related to total or free concentrations of thyroxine or triiodothyronine, within the euthyroid range.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 72 (s16) ◽  
pp. 27P-28P ◽  
Author(s):  
P.J. Pacy ◽  
K.N. Cheng ◽  
J. Webster ◽  
G.C. Ford ◽  
D. Halliday ◽  
...  

1992 ◽  
Vol 263 (4) ◽  
pp. E794-E799 ◽  
Author(s):  
P. De Feo ◽  
F. F. Horber ◽  
M. W. Haymond

The present studies were performed to test the hypothesis that the liver, by increasing the synthesis of specific plasma proteins during the absorption of an amino acid meal, may play an important role in the temporary "storage" of ingested essential amino acids and to explore the effects of glucocorticosteroids and recombinant human growth hormone (rhGH) on these processes. The fractional synthetic rates of albumin and fibrinogen were determined using simultaneous infusions of intravenous [1-14C]leucine and intraduodenal [4,5-3H]leucine after 22 h fasting and during absorption of glucose and amino acids in four groups of normal subjects treated for 1 wk with placebo, prednisone (0.8 mg.kg-1.day-1), rhGH (0.1 mg.kg-1.day-1), or combined treatment. When compared with the fasted state and independent of the route of tracer delivery and hormonal treatment, albumin, but not fibrinogen, synthesis increased (P < 0.0001) during absorption of a mixed glucose amino acid meal in all groups. This increase in albumin synthesis accounted for 28% of the increase in whole body protein synthesis associated with feeding and for 24, 22, and 14% in the prednisone, rhGH, and combined treatment groups, respectively. These data suggest that the stimulation of albumin synthesis observed during feeding prevents irreversible oxidative losses of a significant fraction of ingested essential amino acids and may serve as a vehicle to capture excess dietary amino acids and transport them to peripheral tissues to sustain local protein synthesis.


1997 ◽  
Vol 272 (4) ◽  
pp. E584-E591 ◽  
Author(s):  
M. Cayol ◽  
Y. Boirie ◽  
F. Rambourdin ◽  
J. Prugnaud ◽  
P. Gachon ◽  
...  

The influence of the protein content of the meal on protein turnover was investigated in the splanchnic bed and in the remaining parts of the body in humans. Two groups of five subjects consumed every 20 min a liquid formula providing either 1.5 g protein x kg(-1) x day(-1) (P) or no protein (PF). L-[1-(13)C]leucine and L-[5,5,5-(2)H3]leucine were administered by vein and gut, respectively. An open two-pool model was developed to calculate leucine kinetics in both compartments, with the assumption that the enrichment of the tracers incorporated into very low density lipoprotein apolipoprotein B100 at isotopic steady state could reflect the leucine labeling in the splanchnic region. Nonsplanchnic uptake and release of leucine were not significantly different in the two groups. Within the splanchnic area, leucine uptake was 2.1 times higher in the P than in the PF group (P < 0.01), whereas leucine release was reduced but not significantly (-19%) in the P group compared with the PF group. Moreover, data derived from this model showed that protein intake induced an increase in whole body protein synthesis and no change in whole body protein breakdown. Albumin synthesis, as well as its contribution to whole body protein synthesis, was significantly enhanced by protein intake.


Sign in / Sign up

Export Citation Format

Share Document