Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia

2013 ◽  
Vol 125 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Victoria Clérigues ◽  
Christopher L. Murphy ◽  
Maria Isabel Guillén ◽  
Maria José Alcaraz

HO-1 (haem oxygenase-1) catalyses the degradation of haem and possesses anti-inflammatory and cytoprotective properties. The role of inflammatory mediators in the pathogenesis of OA (osteoarthritis) is becoming increasingly appreciated. In the present study, we investigated the effects of HO-1 induction in OA and healthy HACs (human articular chondrocytes) in response to inflammatory cytokine IL-1 β (interleukin-1β) under hypoxic conditions. Hypoxia was investigated as it is a more physiological condition of the avascular cartilage. Hypoxic signalling is mediated by HIFs (hypoxia-inducible factors), of which there are two main isoforms, HIF-1α and HIF-2α. Normal and OA chondrocytes were stimulated with IL-1β. This cytokine suppresses HO-1 expression and exerts both catabolic and anti-anabolic effects, while increasing HIF-1α and suppressing HIF-2α protein levels in OA chondrocytes in hypoxia. Induction of HO-1 by CoPP (cobalt protoporphyrin IX) reversed these IL-1β actions. The hypoxia-induced anabolic pathway involving HIF-2α, SOX9 [SRY (sex determining region Y)-box 9] and COL2A1 (collagen type II α1) was suppressed by IL-1β, but importantly, levels were restored by HO-1 induction, which down-regulated TNFα (tumour necrosis factor α), MMP (matrix metalloproteinase) activity and MMP-13 protein levels. Depletion of HO-1 using siRNA (small interfering RNA) abolished the CoPP effects, further demonstrating that these were due to HO-1. The results of the present study reveal the different mechanisms by which HO-1 exerts protective effects on chondrocytes in physiological levels of hypoxia.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 341 ◽  
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

Since hypoxia-induced neurotoxicity is one of the major causes of neurodegenerative disorders, including the Alzheimer’s disease, continuous efforts to find a novel antioxidant from natural products are required for public health. 6,7,4′-trihydroxyflavanone (THF), isolated from Dalbergia odorifera, has been shown to inhibit osteoclast formation and have an antibacterial activity. However, no evidence has reported whether THF has a protective role against hypoxia-induced neurotoxicity. In this study, we found that THF is not cytotoxic, but pre-treatment with THF has a cytoprotective effect on CoCl2-induced hypoxia by restoring the expression of anti-apoptotic proteins in SH-SY5y cells. In addition, pre-treatment with THF suppressed CoCl2-induced hypoxia-related genes including HIF1α, p53, VEGF, and GLUT1 at the mRNA and protein levels. Pre-treatment with THF also attenuated the oxidative stress occurred by CoCl2-induced hypoxia by preserving antioxidant proteins, including SOD and CAT. We revealed that treatment with THF promotes HO-1 expression through Nrf2 nuclear translocation. An inhibitor assay using tin protoporphyrin IX (SnPP) confirmed that the enhancement of HO-1 by pre-treatment with THF protects SH-SY5y cells from CoCl2-induced neurotoxicity under hypoxic conditions. Our results demonstrate the advantageous effects of THF against hypoxia-induced neurotoxicity through the HO-1/Nrf2 signaling pathway and provide a therapeutic insight for neurodegenerative disorders.


2008 ◽  
Vol 16 (6) ◽  
pp. 715-722 ◽  
Author(s):  
B. Caramés ◽  
M.J. López-Armada ◽  
B. Cillero-Pastor ◽  
M. Lires-Dean ◽  
C. Vaamonde ◽  
...  

2011 ◽  
Vol 122 (5) ◽  
pp. 239-251 ◽  
Author(s):  
Victoria Clérigues ◽  
Maria Isabel Guillén ◽  
Francisco Gomar ◽  
Maria José Alcaraz

IL (interleukin)-1β plays an important role in cartilage extracellular matrix degradation and bone resorption in OA (osteoarthritis) through the induction of degradative enzymes and pro-inflammatory mediators. In the present study, we have determined the consequences of HO-1 (haem oxygenase-1) induction on markers of inflammation and senescence in the functional unit cartilage–subchondral bone stimulated with IL-1β. Cartilage–subchondral bone specimens were obtained from the knees of osteoarthritic patients. Treatment with the HO-1 inducer CoPP (cobalt protoporphyrin IX) counteracted the stimulatory effects of IL-1β on IL-6, nitrite, PGE2 (prostaglandin E2), TGF (transforming growth factor) β2, TGFβ3 and osteocalcin. Immunohistochemical analyses indicated that CoPP treatment of explants down-regulated iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2) and mPGES-1 (microsomal prostaglandin E synthase-1) induced by IL-1β. In contrast, the expression of HMGB1 (high-mobility group box 1) was not significantly modified. In addition, CoPP decreased the expression of iNOS and mPGES-1 in cells isolated from the explants and stimulated with IL-1β, which was counteracted by an siRNA (small interfering RNA) specific for human HO-1. In isolated primary chondrocytes, we determined senescence-associated β-galactosidase activity and the expression of senescence markers by real-time PCR. We have found that HO-1 induction could regulate senescence markers in the presence of IL-1β and significantly affected telomerase expression, as well as β-galactosidase activity and hTERT (human telomerase reverse transcriptase) and p21 expression in chondrocytes. The findings of the present study support the view that HO-1 induction results in the down-regulation of inflammatory and senescence responses in OA articular tissues.


2018 ◽  
Vol 96 (5) ◽  
pp. 646-654 ◽  
Author(s):  
Yunsong Zhang ◽  
Jun Fang ◽  
Huiwen Ma

Myocardial infarction (MI), a type of ischemic heart disease, is generally accompanied by apoptosis of cardiomyocytes. MicroRNAs play the vital roles in the development and physiology of MI. Here, we established a downregulation model of miR-182-5p in H9c2 cells under hypoxic conditions to investigate the potential molecular mechanisms for miR-182-5p in hypoxia-induced cardiomyocyte apoptosis (HICA). RT-qPCR indicated that miR-182-5p levels exhibit a time-dependent increase in the rate of apoptosis induced by hypoxia. The results from the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays indicated that cardiomyocyte injury noticeably increased after exposure to hypoxia. Meanwhile, hypoxia dramatically increased the apoptosis rate [which was reflected in the results from the annexin V – propidium iodide (PI) assay], enhanced caspase-3 activity, and reduced the expression of Bcl-2. Downregulation of miR-182-5p can significantly reverse hypoxia-induced cardiomyocyte injury or apoptosis. Importantly, bioinformatic analysis and dual-luciferase reporter assay revealed that CIAPIN1 (cytokine-induced apoptosis inhibitor 1) was a direct functional target of miR-182-5p, and that inhibition of miR-182-5p can lead to an increase in CIAPIN1 expression at both the mRNA and protein levels. Furthermore, the knockdown of CIAPIN1 with small interfering RNAs (siRNAs) efficiently abolished the protective effects of miR-182-5p inhibitor on HICA, demonstrating that miR-182-5p plays a pro-apoptotic role in cardiomyocytes under hypoxic conditions by downregulating CIAPIN1. Collectively, our results demonstrate that miR-182-5p may serve an underlying target to prevent cardiomyocytes from hypoxia-induced injury or apoptosis.


1996 ◽  
Vol 222 (2) ◽  
pp. 379-384 ◽  
Author(s):  
Francis Berenbaum ◽  
Claire Jacques ◽  
Ginette Thomas ◽  
Marie Thérèse Corvol ◽  
Gilbert Béréziat ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3251
Author(s):  
Taufik Muhammad Fakih ◽  
Fransiska Kurniawan ◽  
Muhammad Yusuf ◽  
Mudasir Mudasir ◽  
Daryono Hadi Tjahjono

Nuclear receptor REV-ERBβ is an overexpressed oncoprotein that has been used as a target for cancer treatment. The metal-complex nature of its ligand, iron protoporphyrin IX (Heme), enables the REV-ERBβ to be used for multiple therapeutic modalities as a photonuclease, a photosensitizer, or a fluorescence imaging agent. The replacement of iron with cobalt as the metal center of protoporphyrin IX changes the ligand from an agonist to an antagonist of REV-ERBβ. The mechanism behind that phenomenon is still unclear, despite the availability of crystal structures of REV-ERBβ in complex with Heme and cobalt protoporphyrin IX (CoPP). This study used molecular dynamic simulations to compare the effects of REV-ERBβ binding to Heme and CoPP, respectively. The initial poses of Heme and CoPP in complex with agonist and antagonist forms of REV-ERBβ were predicted using molecular docking. The binding energies of each ligand were calculated using the MM/PBSA method. The computed binding affinity of Heme to REV-ERBβ was stronger than that of CoPP, in agreement with experimental results. CoPP altered the conformation of the ligand-binding site of REV-ERBβ, disrupting the binding site for nuclear receptor corepressor, which is required for REV-ERBβ to regulate the transcription of downstream target genes. Those results suggest that a subtle change in the metal center of porphyrin can change the behavior of porphyrin in cancer cell signaling. Therefore, modification of porphyrin-based agents for cancer therapy should be conducted carefully to avoid triggering unfavorable effects.


Author(s):  
Marek Scholz ◽  
Gauthier Croizat ◽  
Jakub Pšenčík ◽  
Roman Dědic ◽  
Santi Nonell ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Mosha Cheng ◽  
Qing Zhou

As a histone methyltransferase, enhancer of zeste homolog 2 (EZH2), suppresses osteoblast maturation and is involved in inflammation. However, the role of EZH2 in human periodontal ligament stem cells (PDLSCs) under inflammation still needs to be further investigated. This study aimed to identify the underlying mechanisms and explore the function of EZH2 in PDLSC osteogenesis under inflammation. PDLSCs were treated with sh-EZH2, DZNep or DKK1 under inflammation. The alkaline phosphatase (ALP) activity, alizarin red staining, and osteogenesis-related protein levels were analyzed. Lipopolysaccharide (LPS)-induced inflammation restrained osteogenic differentiation. Under inflammation, the upregulation of EZH2 suppressed the expression of osteogenic markers, including osteocalcin, runt-related transcription factor 2, and bone morphogenetic protein-2, the activity of ALP, and the accumulation of mineralization through the Wnt/β-catenin pathway. EZH2 knockdown inhibited the levels of proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α. These results suggested that LPS-induced overexpression of EZH2 suppressed PDLSC osteogenesis under inflammatory conditions through the Wnt/β-catenin pathway. These findings give new insights into the physiological differentiation and pathological inflammation of PDLSC osteogenesis, and provide an underlying therapeutic target for periodontitis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ke Zhang ◽  
Zhuoying Li ◽  
Yunyang Lu ◽  
Linyi Xiang ◽  
Jiadong Sun ◽  
...  

Abstract Background The Wnt planar cell polarity (PCP) pathway is implicated in osteoarthritis (OA) both in animals and in humans. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the orientation and alignment of chondrocytes in the growth plate. However, its functional roles in OA still remain undefined. Here, we explored the effects of Vangl2 on OA chondrocyte in vitro and further elucidated the molecular mechanism of silencing Vangl2 in Wnt5a-overexpressing OA chondrocytes. Methods Chondrocytes were treated with IL-1β (10 ng/mL) to simulate the inflammatory microenvironment of OA. The expression levels of Vangl2, Wnt5a, MMPs, and related proinflammatory cytokines were measured by RT-qPCR. Small interfering RNA (siRNA) of Vangl2 and the plasmid targeting Wnt5a were constructed and transfected into ATDC5 cells. Then, the functional roles of silencing Vangl2 in the OA chondrocytes were investigated by Western blotting, RT-qPCR, and immunocytochemistry (ICC). Transfected OA chondrocytes were subjected to Western blotting to analyze the relationship between Vangl2 and related signaling pathways. Results IL-1β induced the production of Vangl2, Wnt5a, and MMPs in a time-dependent manner and the significantly increased expression of Vangl2. Vangl2 silencing effectively suppressed the expression of MMP3, MMP9, MMP13, and IL-6 at both gene and protein levels and upregulated the expression of type II collagen and aggrecan. Moreover, knockdown of Vangl2 inhibited the phosphorylation of MAPK signaling molecules (P38, ERK, and JNK) and P65 in Wnt5a-overexpressing OA chondrocytes. Conclusions For the first time, we demonstrate that Vangl2 is involved in the OA process. Vangl2 silencing can notably alleviate OA progression in vitro by inhibiting the expression of MMPs and increasing the formation of the cartilage matrix and can inhibit the proinflammatory effects of Wnt5a via MAPK and NF-κB pathway. This study provides new insight into the mechanism of cartilage inflammation.


Sign in / Sign up

Export Citation Format

Share Document