scholarly journals TRAIL reduces impaired glucose tolerance and NAFLD in the high-fat diet fed mouse

2018 ◽  
Vol 132 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Stella Bernardi ◽  
Barbara Toffoli ◽  
Veronica Tisato ◽  
Fleur Bossi ◽  
Stefania Biffi ◽  
...  

Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis inducing ligand) may have an important role in the treatment of type 2 diabetes. It has been shown that TRAIL deficiency worsens diabetes and that TRAIL delivery, when it is given before disease onset, slows down its development. The present study aimed at evaluating whether TRAIL had the potential not only to prevent, but also to treat type 2 diabetes. Thirty male C57BL/6J mice were randomized to a standard or a high-fat diet (HFD). After 4 weeks of HFD, mice were further randomized to receive either placebo or TRAIL, which was delivered weekly for 8 weeks. Body weight, food intake, fasting glucose, and insulin were measured at baseline and every 4 weeks. Tolerance tests were performed before drug randomization and at the end of the study. Tissues were collected for further analyses. Parallel in vitro studies were conducted on HepG2 cells and mouse primary hepatocytes. TRAIL significantly reduced body weight, adipocyte hypertrophy, free fatty acid levels, and inflammation. Moreover, it significantly improved impaired glucose tolerance, and ameliorated non-alcoholic fatty liver disease (NAFLD). TRAIL treatment reduced liver fat content by 47% in vivo as well as by 45% in HepG2 cells and by 39% in primary hepatocytes. This was associated with a significant increase in liver peroxisome proliferator-activated receptor (PPAR) γ (PPARγ) co-activator-1 α (PGC-1α) expression both in vivo and in vitro, pointing to a direct protective effect of TRAIL on the liver. The present study confirms the ability of TRAIL to significantly attenuate diet-induced metabolic abnormalities, and it shows for the first time that TRAIL is effective also when administered after disease onset. In addition, our data shed light on TRAIL therapeutic potential not only against impaired glucose tolerance, but also against NAFLD.

Bone ◽  
2021 ◽  
pp. 116302
Author(s):  
Joan E. LLabre ◽  
Grażyna E. Sroga ◽  
Matthew J.L. Tice ◽  
Deepak Vashishth

2018 ◽  
Author(s):  
Jung Ok Lee ◽  
Hye Jeong Lee ◽  
Yong Woo Lee ◽  
Jeong Ah Han ◽  
Min Ju Kang ◽  
...  

AbstractMeteorin-like (metrnl) is a recently identified adipomyokine that has beneficial effects on glucose metabolism. However, its underlying mechanism of action is not completely understood. In this study, we have shown that a level of metrnl increase in vitro under electrical-pulse-stimulation (EPS) and in vivo in exercise mice, suggesting that metrnl is an exercise-induced myokine. In addition, metrnl increases glucose uptake through the calcium-dependent AMPK pathway. Metrnl also increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPK-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. The intraperitoneal injection of recombinant metrnl improves glucose tolerance in mice with high fat-induced obesity or type 2 diabetes (db/db), but this is not seen in AMPK β1β2 muscle-specific null mice (AMPK β1β2 MKO). In conclusion, we have demonstrated that metrnl induces beneficial effects on glucose metabolism via AMPK and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Eun Young Park ◽  
Eung Hwi Kim ◽  
Mi Hwi Kim ◽  
Young Wan Seo ◽  
Jung Im Lee ◽  
...  

Ecklonia cava (E. cava)is a brown alga that has beneficial effects in models of type 1 and type 2 diabetes. However, the effects ofE. cavaextracts on diet-induced obesity and type 2 diabetes have not been specifically examined. We investigated the effects ofE. cavaon body weight, fat content, and hyperglycemia in high-fat diet- (HFD) induced obese mice and sought the mechanisms involved. C57BL/6 male mice were fed a HFD (60% fat) diet or normal chow. After 3 weeks, the HFD diet group was given extracts (200 mg/kg) ofE. cavaharvested from Jeju (CA) or Gijang (G-CA), Korea or PBS by oral intubation for 8 weeks. Body weights were measured weekly. Blood glucose and glucose tolerance were measured at 7 weeks, and fat pad content and mRNA expression of adipogenic genes and inflammatory cytokines were measured after 8 weeks of treatment. G-CA was effective in reducing body weight gain, body fat, and hyperglycemia and improving glucose tolerance as compared with PBS-HFD mice. The mRNA expression of adipogenic genes was increased, and mRNA expression of inflammatory cytokines and macrophage marker gene was decreased in G-CA-treated obese mice. We suggest that G-CA reduces obesity and glucose levels by anti-inflammatory actions and improvement of lipid metabolism.


Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3570-3580 ◽  
Author(s):  
Hiroshi Nomoto ◽  
Takuma Kondo ◽  
Hideaki Miyoshi ◽  
Akinobu Nakamura ◽  
Yoko Hida ◽  
...  

The large-Maf transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) has been found to be crucial for insulin transcription and synthesis and for pancreatic β-cell function and maturation. However, insights about the effects of small Maf factors on β-cells are limited. Our goal was to elucidate the function of small-Maf factors on β-cells using an animal model of endogenous small-Maf dysfunction. Transgenic (Tg) mice with β-cell-specific expression of dominant-negative MafK (DN-MafK) experiments, which can suppress the function of all endogenous small-Mafs, were fed a high-fat diet, and their in vivo phenotypes were evaluated. Phenotypic analysis, glucose tolerance tests, morphologic examination of β-cells, and islet experiments were performed. DN-MafK-expressed MIN6 cells were also used for in vitro analysis. The results showed that DN-MafK expression inhibited endogenous small-Maf binding to insulin promoter while increasing MafA binding. DN-MafK Tg mice under high-fat diet conditions showed improved glucose metabolism compared with control mice via incremental insulin secretion, without causing changes in insulin sensitivity or MafA expression. Moreover, up-regulation of insulin and glucokinase gene expression was observed both in vivo and in vitro under DN-MafK expression. We concluded that endogenous small-Maf factors negatively regulates β-cell function by competing for MafA binding, and thus, the inhibition of small-Maf activity can improve β-cell function.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Fu ◽  
Jing Luo ◽  
Zhenquan Jia ◽  
Wei Zhen ◽  
Kequan Zhou ◽  
...  

In both type 1 (T1D) and type 2 diabetes (T2D), the deterioration of glycemic control over time is primarily caused by an inadequate mass and progressive dysfunction ofβ-cell, leading to the impaired insulin secretion. Here, we show that dietary supplementation of baicalein, a flavone isolated from the roots of Chinese herbScutellaria baicalensis, improved glucose tolerance and enhanced glucose-stimulated insulin secretion (GSIS) in high-fat diet (HFD-) induced middle-aged obese mice. Baicalein had no effect on food intake, body weight gain, circulating lipid profile, and insulin sensitivity in obese mice. Using another mouse model of type 2 diabetes generated by high-fat diet (HFD) feeding and low doses of streptozotocin injection, we found that baicalein treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in these middle-aged obese diabetic mice, which are associated with the improved isletβ-cell survival and mass. In thein vitrostudies, baicalein significantly augmented GSIS and promoted viability of insulin-secreting cells and human islets cultured either in the basal medium or under chronic hyperlipidemic condition. These results demonstrate that baicalein may be a naturally occurring antidiabetic agent by directly modulating pancreaticβ-cell function.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2208-2218 ◽  
Author(s):  
Nadine S. Sauter ◽  
Fabienne T. Schulthess ◽  
Ryan Galasso ◽  
Lawrence W. Castellani ◽  
Kathrin Maedler

Subclinical inflammation is a recently discovered phenomenon in type 2 diabetes. Elevated cytokines impair β-cell function and survival. A recent clinical trial shows that blocking IL-1β signaling by IL-1 receptor antagonist (IL-1Ra) improves β-cell secretory function in patients with type 2 diabetes. In the present study, we provide further mechanisms of the protective role of IL-1Ra on the β-cell. IL-1Ra prevented diabetes in vivo in C57BL/6J mice fed a high-fat/high-sucrose diet (HFD) for 12 wk; it improved glucose tolerance and insulin secretion. High-fat diet treatment increased serum levels of free fatty acids and of the adipokines resistin and leptin, which were reduced by IL-1Ra treatment. In addition, IL-1Ra counteracted adiponectin levels, which were decreased by high-fat feeding. Studies on isolated islets revealed that IL-1Ra specifically acted on the β-cell. IL-1Ra protected islets from HFD treated animals from β-cell apoptosis, induced β-cell proliferation, and improved glucose-stimulated insulin secretion. Insulin mRNA was reduced in islets from mice fed a HFD but normalized in the IL-1Ra group. Our results show that IL-1Ra improves β-cell survival and function, and support the potential role for IL-1Ra in the treatment of diabetes.


2014 ◽  
Vol 224 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Xiao-Bing Cui ◽  
Jun-Na Luan ◽  
Jianping Ye ◽  
Shi-You Chen

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases and many other chronic diseases. Adipose tissue inflammation is a critical link between obesity and insulin resistance and type 2 diabetes and a contributor to disease susceptibility and progression. The objective of this study was to determine the role of response gene to complement 32 (RGC32) in the development of obesity and insulin resistance. WT and RGC32 knockout (Rgc32−/− (Rgcc)) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Metabolic, biochemical, and histologic analyses were performed. 3T3-L1 preadipocytes were used to study the role of RGC32 in adipocytes in vitro. Rgc32−/− mice fed with HFD exhibited a lean phenotype with reduced epididymal fat weight compared with WT controls. Blood biochemical analysis and insulin tolerance test showed that RGC32 deficiency improved HFD-induced dyslipidemia and insulin resistance. Although it had no effect on adipocyte differentiation, RGC32 deficiency ameliorated adipose tissue and systemic inflammation. Moreover, Rgc32−/− induced browning of adipose tissues and increased energy expenditure. Our data indicated that RGC32 plays an important role in diet-induced obesity and insulin resistance, and thus it may serve as a potential novel drug target for developing therapeutics to treat obesity and metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document