scholarly journals A novel circFMN2 promotes tumor proliferation in CRC by regulating the miR-1182/hTERT signaling pathways

2019 ◽  
Vol 133 (24) ◽  
pp. 2463-2479 ◽  
Author(s):  
Yongchao Li ◽  
Changfeng Li ◽  
Ruisi Xu ◽  
Yun Wang ◽  
Dandan Li ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a class of non-coding RNAs broadly expressed in cells of various species. However, the molecular mechanisms that link circRNAs with colorectal cancer (CRC) are not well understood. In the present study, we attempted to provide novel basis for targeted therapy for CRC from the aspect of circRNA–microRNA (miRNA)–mRNA interaction. Methods: We investigated the expression of circRNAs in five paired CRC tissues and adjacent non-tumor tissues by microarray analysis. Differentially expressed circRNAs were identified between CRC tissues and non-cancerous matched tissues. We focused on hsa_circ_0005100, which is located on chromosome 1 and derived from FMN2, and thus we named it as circFMN2. The expression of circFMN2 was detected in 88 CRC tissues and cell lines by quantitative real-time PCR. Functional assays were performed to evaluate the effects of circFMN2 on proliferation in vitro, and on tumorigenesis in vivo. The relationship between circFMN2 and miR-1182 was confirmed by luciferase reporter assay. Results: circFMN2 was found to be significantly up-regulated in CRC tissues and cell lines. Moreover, knockdown of circFMN2 significantly inhibited cell proliferation and migration in vitro. Bioinformatics analysis predicted that there is a circFMN2/miR-1182/hTERT axis in CRC progression. Dual-luciferase reporter system validated the direct interaction of circFMN2, miR-1182, hTERT. Western blot verified that inhibition of circFMN2 decreased hTERT expression. Importantly, we demonstrated that circFMN2 was up-regulated in serum exosomes from CRC patients. Conclusion: In conclusion, circFMN2 is a central component linking circRNAs to progression of CRC via an miR-1182/hTERT axis.

2019 ◽  
Vol 133 (9) ◽  
pp. 1053-1066 ◽  
Author(s):  
Linli Tian ◽  
Jing Cao ◽  
Hui Jiao ◽  
Jiarui Zhang ◽  
Xiuxia Ren ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) broadly expressed in cells of various species. However, the molecular mechanisms that link circRNAs with laryngeal squamous cell carcinoma (LSCC) are not well understood. In the present study, we attempted to provide novel basis for targeted therapy for LSCC from the aspect of circRNA–microRNA (miRNA)–mRNA interaction. Methods: We investigated the expression of circRNAs in three paired LSCC tissues and adjacent non-tumor tissues by microarray analysis. Differentially expressed circRNAs were identified between LSCC tissues and non-cancerous matched tissues, including 527 up-regulated circRNAs and 414 down-regulated circRNAs. We focused on hsa_circ_0059354, which is located on chromosome 20 and derived from RASSF2, and thus we named it circRASSF2. Results: circRASSF2 was found to be significantly up-regulated in LSCC tissues and LSCC cell lines compared with paired adjacent non-tumorous tissues and normal cells. Moreover, knockdown of circRASSF2 significantly inhibited cell proliferation and migration in vitro, which was blocked by miR-302b-3p inhibitor. Bioinformatics analysis predicted that there is a circRASSF2/miR-302b-3p/ insulin-like growth factor 1 receptor (IGF-1R) axis in LSCC progression. Dual-luciferase reporter system validated the direct interaction of circRASSF2, miR-302b-3p, and IGF-1R. Western blot verified that inhibition of circRASSF2 decreased IGF-1R expression. Furthermore, silencing circRASSF2 suppressed LSCC growth in vivo. Importantly, we demonstrated that circRASSF2 was up-regulated in serum exosomes from LSCC patients. Altogether, silencing circRASSF2 suppresses progression of LSCC by interacting with miR-302b-3p and decreasing inhibiting IGF-1R expression. Conclusion: In conclusion, these data suggest that circRASSF2 is a central component linking circRNAs to progression of LSCC via an miR-302b-3p/IGF-1R axis.


2019 ◽  
Vol 133 (18) ◽  
pp. 1935-1953 ◽  
Author(s):  
Shuming Wang ◽  
Yilin Hu ◽  
Xiurui Lv ◽  
Bin Li ◽  
Dianhua Gu ◽  
...  

Abstract Circular RNAs (circRNAs) play a vital role in cancers. Accumulated evidences showed that the physiological condition of cells can be reflected by the circRNAs in the exosomes they secrete, and these exosomal circRNAs can be captured by the receptor cells, thereby inducing a series of cellular responses. We performed qRT-PCR to detect the expression level of circ-0000284 in cholangiocarcinoma cell lines, tissues and plasma exosomes. Then the direct interaction between circ-0000284 and miR-637 was investigated through dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP) assay and Fluorescent in situ hybridization (FISH) assay. Subsequently, EdU (5-ethynyl-2′-deoxyuridine), migration, invasion assay, flow cytometry and nude mouse tumorigenicity assay were adopted to evaluate the effect of circ-0000284 on migration, invasion, proliferation and apoptosis of cholangiocarcinoma cells. Additionally, TEM was conducted to investigate the shape and size of exosomes from cholangiocarcioma and 293T cell lines. Circ-0000284 was evidently elevated in cholangiocarcinoma cell lines, tumor tissues and plasma exosomes. Meanwhile, the high expression of circ-0000284 enhanced the migration, invasion and proliferation abilities of cholangiocarcinoma cells in vivo and in vitro. Besides, the levels of circ-0000284 were increased in cholangiocarcinoma cells and exosomes from them. Moreover, exosomes from cholangiocarcinoma cells enhanced circ-0000284 expression and stimulated migration and proliferation of the surrounding normal cells. Our findings suggest that on the one hand circ-0000284 functions as a competitive endogenous RNA to promote cholangiocarcinoma progression, and on the other hand, circ-0000284 can be directly transferred from cholangiocarcinoma cells to surrounding normal cells via exosomes and in this way regulate the biological functions of surrounding normal cells.


Author(s):  
Taoyue Yang ◽  
Peng Shen ◽  
Qun Chen ◽  
Pengfei Wu ◽  
Hao Yuan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are becoming a unique member of non-coding RNAs (ncRNAs) with emerging evidence of their regulatory roles in various cancers. However, with regards to pancreatic ductal adenocarcinoma (PDAC), circRNAs biological functions remain largely unknown and worth investigation for potential therapeutic innovation. Methods In our previous study, next-generation sequencing was used to identify differentially expressed circRNAs in 3 pairs of PDAC and adjacent normal tissues. Further validation of circRHOBTB3 expression in PDAC tissues and cell lines and gain-and-loss function experiments verified the oncogenic role of circRHOBTB3. The mechanism of circRHOBTB3 regulatory role was validated by pull-down assays, RIP, luciferase reporter assays. The autophagy response of PANC-1 and MiaPaca-2 cells were detected by mCherry-GFP-LC3B labeling and confocal microscopy, transmission electron microscopy and protein levels of LC3B or p62 via Western blot. Results circRHOBTB3 is highly expressed in PDAC cell lines and tissues, which also promotes PDAC autophagy and then progression in vitro and in vivo. Mechanistically, circRHOBTB3 directly binds to miR-600 and subsequently acts as a miRNA-sponge to maintain the expression level of miR-600-targeted gene NACC1, which facilitates the autophagy response of PDAC cells for adaptation of proliferation via Akt/mTOR pathway. Moreover, the RNA-binding protein FUS (FUS) directly binds to pre-RHOBTB3 mRNA to mediate the biogenesis of circRHOBTB3. Clinically, circRHOBTB3, miR-600 and NACC1 expression levels are correlated with the prognosis of PDAC patients and serve as independent risk factors for PDAC patients. Conclusions FUS-mediated circRHOBTB3 functions as a tumor activator to promote PDAC cell proliferation by modulating miR-600/NACC1/Akt/mTOR axis regulated autophagy.


2021 ◽  
Author(s):  
Ramesh Bhandari ◽  
Sun Gui Feng ◽  
Liu Ya ◽  
Bian Zhixuan ◽  
Pan Quihui ◽  
...  

Abstract Background: Hepatoblastoma is common hepatic tumors occurring children between 0 – 5 years. Accumulating studies has shown lncRNA potential role in distinct cancers progression and development including the hepatoblastoma. SnoRNA host gene 9 (SNHG9) is associated the progression of distinct human cancers but, it`s specific molecular mechanisms in hepatoblastoma not unknown. Methods:In this study, we estimated SNHG9 expression on hepatoblastoma tissue and cell lines by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Next, we downregulated and upregulated the SNHG9 expression in hepatoblastoma cell lines and then determined the cell proliferation (CCK-8), colony formation, cellular apoptosis activity. The dual luciferase reporter activity, RNA immunoprecipitation (RIP), biotin RNA pulls down and Spemann’s Pearson correlation coefficient assay were performed to establish the interaction between the SNHG9, WNt3a and miR-23a-5p. Xenograft in-vivo tumorgenicity test was performed to elucidate therole of SNHG9 hepatoblastoma in tumorigenesis. SNHG9 role in Cisplatin drugs resistance in hepatoblastoma was also determined. Results:SNHG9 was significantly upregulated in hepatoblastoma tissue and cell lines. SNHG9 overexpression on HUH6 & HepG2 resulted in a significant increase in cell proliferation and clonogeneic while SNHG9 knock down resulted in a sustained inhibition of cell proliferation and clonogenic activity. Dual luciferase activity, RNA immunoprecipitation and biotin pull down confirmed the direct interaction of miR-23a-5p with SNHG9. In Xenograft tumorgenicity test showed SNHG9 downregulation significantly reduced the tumor growth on mice. ROC and Kaplan-Meier analysis showed potential prognostic and diagnostic importance of SNHG9 in hepatoblastoma.Conclusion: We concluded that SNHG9/miR-23a-5p/Wnt3a axis promotes the progression hepatoblastoma tumor.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuping Du ◽  
Xin Liu ◽  
Song Zhang ◽  
Shuo Chen ◽  
Xue Guan ◽  
...  

Abstract Background Ovarian cancer is the leading cause of death in patients with gynecologic cancer, and circular RNAs (circRNAs) are involved in cancer progression. However, there are limited studies on the roles of circRNAs in ovarian cancer. Methods We designed divergent and convergent primers, used sanger sequencing and RNase R digestion to verify the source of circCRIM1. We detected the expression of circCRIM1 and its parental gene cysteine rich transmembrane BMP regulator 1 (CRIM1) in ovarian cancer and normal ovarian samples via qRT-PCR. MTT viability assay, apoptosis assay, wound healing assay and invasion assay were used to investigate the function of circCRIM1 and CRIM1 in ovarian cancer cell lines OVCAR3 and CAOV3. Mice xenografts experiment was performed. Bioinformatics predicted the microRNAs that bond with circCRIM1 and CRIM1, and dual luciferase reporter system confirmed it. Rescue experiments of microRNAs mimics transfection on the basis of circCRIM1 over-expression were carried out to uncover the mechanism by which circCRIM1 played cancer-promoting roles in ovarian cancer. Results CircCRIM1 was derived from CRIM1 by back-splicing. CircCRIM1 and CRIM1 had higher expression in ovarian cancer than in normal ovarian tissues, and both of them promoted ovarian cancer progression in vitro. In vivo circCRIM1 promoted the growth of tumors. CircCRIM1 and CRIM1 had a positive correlation relationship in the same cohort of ovarian cancer tissues. Bioinformatics predicted and dual luciferase assay confirmed circCRIM1 and CRIM1 bond with miR-145-5p, and circCRIM1 bond with miR-383-5p additionally. CircCRIM1 positively affected the expression of CRIM1. After circCRIM1 was over-expressed, miR-145-5p mimics transfection reversed the expression of CRIM1. Western blot discovered circCRIM1 positively affected the expression of zinc finger E-box binding homeobox 2 (ZEB2). Rescue experiments found miR-383-5p mimics reversed ZEB2 expression and the cancer-promoting effects of circCRIM1. Conclusions CircCRIM1 bond with miR-145-5p to work as competing endogenous RNA (ceRNA) of CRIM1, and circCRIM1 bond with miR-383-5p to improve the expression of ZEB2 in ovarian cancer. CircCRIM1 and CRIM1 promoted the ovarian cancer progression and supplied a novel insight into the researches of ovarian cancer.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Fang Wang ◽  
Xiaochun Wang ◽  
Jingruo Li ◽  
Pengwei Lv ◽  
Mingli Han ◽  
...  

Abstract Background Circular RNAs (circRNAs) have caught increasing attentions and interests for their important involvement in cancer initiation and progression. This study aims to investigate the biological functions of circNOL10 and its potential molecular mechanisms in breast cancer (BC). Materials and methods qRT-PCR and western blot assays were performed to measure the expression of related genes. CCK-8, colony formation, flow cytomerty and transwell assays were used to assess cell proliferation, cell cycle, migration and invasion. RNA pull-down, luciferase reporter and RIP assays were applied to address the potential regulatory mechanism of circNOL10. Results CircNOL10 was down-regulated in BC tissues and cells. Low expression of circNOL10 was associated with larger tumor size, advanced TNM stage, lymph node metastasis and unfavorable prognosis. Overexpression of circNOL10 inhibited cell proliferation, migration, invasion and EMT in vitro and slowed xenograft tumor growth in vivo. Mechanistically, circNOL10 could act as a molecular sponge for miR-767-5p, leading to the up-regulation of suppressors of cytokine signaling 2 (SOCS2) and inactivation of JAK2/STAT5 pathway. Moreover, circNOL10-mediated suppression of malignant phenotypes was attenuated by miR-767-5p. Similar to circNOL10, enforced expression of SOCS2 also resulted in the suppression of cell proliferation and metastasis. Furthermore, knockdown of SOCS2 reversed the tumor-suppressive effect induced by circNOL10. Conclusions CircNOL10 repressed BC development via inactivation of JAK2/STAT5 signaling by regulating miR-767-5p/SOCS2 axis. Our findings offer the possibility of exploiting circNOL10 as a therapeutic and prognostic target for BC patients.


Author(s):  
Bingsheng Yang ◽  
Lutao Li ◽  
Ge Tong ◽  
Zhirui Zeng ◽  
Jianye Tan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. Methods Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422. Results We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells. Conclusions Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueliang Zuo ◽  
Zhiqiang Chen ◽  
Wen Gao ◽  
Yao Zhang ◽  
Jinguo Wang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) possess significant regulatory functions in multiple biological and pathological processes, especially in cancer. Dysregulated lncRNAs in hepatocellular carcinoma (HCC) and their therapeutic applications remain unclear. Methods Differentially expressed lncRNA profile in HCC was constructed using TCGA data. LINC00958 expression level was examined in HCC cell lines and tissues. Univariate and multivariate analyses were performed to demonstrate the prognostic value of LINC00958. Loss-of-function and gain-of-function experiments were used to assess the effects of LINC00958 on cell proliferation, motility, and lipogenesis. Patient-derived xenograft model was established for in vivo experiments. RNA immunoprecipitation, dual luciferase reporter, biotin-labeled miRNA pull-down, fluorescence in situ hybridization, and RNA sequencing assays were performed to elucidate the underlying molecular mechanisms. We developed a PLGA-based nanoplatform encapsulating LINC00958 siRNA and evaluated its superiority for systemic administration. Results We identified a lipogenesis-related lncRNA, LINC00958, whose expression was upregulated in HCC cell lines and tissues. High LINC00958 level independently predicted poor overall survival. Functional assays showed that LINC00958 aggravated HCC malignant phenotypes in vitro and in vivo. Mechanistically, LINC00958 sponged miR-3619-5p to upregulate hepatoma-derived growth factor (HDGF) expression, thereby facilitating HCC lipogenesis and progression. METTL3-mediated N6-methyladenosine modification led to LINC00958 upregulation through stabilizing its RNA transcript. A PLGA-based nanoplatform loaded with si-LINC00958 was developed for HCC systemic administration. This novel drug delivery system was controlled release, tumor targeting, safe, and presented satisfactory antitumor efficacy. Conclusions Our results delineate the clinical significance of LINC00958 in HCC and the regulatory mechanisms involved in HCC lipogenesis and progression, providing a novel prognostic indicator and promising nanotherapeutic target.


2020 ◽  
Author(s):  
Qiliang Cai ◽  
Jiancheng Pan ◽  
Enli Liang ◽  
Dingrong Zhang ◽  
Cheng Fang ◽  
...  

Abstract Background: Prostate cancer (PCa) is one of the most common malignancies in men. Circular RNAs (circRNAs) are known to be the important regulators in cancer progression. However, the role of circRNAs in PCa is yet to be investigated. Therefore, this study focuses on investigating the effect and the underlying molecular mechanisms of hsa_circ_0001686 (circ_0001686) in PCa. Methods: Sample tissues were collected from the PCa patients to carry out the microarray expression profile of the human circRNAs. In addition, the expression levels of circ_0001686, has_miR-411-5p (miR-411-5p), SMAD3, and TGFBR2 were also detected by qRT-RCR. Next, transfection experiments were employed to measure the effect of circ_0001686 on cell proliferation, migration, and invasion in the PCa cell lines (CWR22RV1and LNCaP). These effects were analyzed using MTT, colony formation, transwell, and scratch wound assays, respectively. The si-circ_0001686 was used as a negative control. Starbase and TargetScan databases were used to predict the putative binding sites among circ_0001686, miR-411-5p, and SMAD3/TGFBR2. The dual-luciferase reporter assays were performed to verify these interactions. Furthermore, the levels of SMAD3 and TGFBR2 in CWR22RV1 and LNCaP cells were measured by western blot. Finally, in vivo experiments in the nude mouse model were carried out to strengthen the in vitro findings. Results: The expression of circ_0001686 was markedly up-regulated while the expression of miR-411-5p was down-regulated in PCa cells. Moreover, circ_0001686 promoted cell proliferation, migration, and invasion. Molecular mechanism exploration revealed that circ_0001686 acts as a sponge of miR-411-5p which affects the downstream target gene SMAD3, and TGFBR2. Both the in vitro and in vivo studies verified that miR-411-5p inhibits cancer growth and metastasis in PCa.Conclusions: The circ_0001686 sequesters miR-411-5p to increase the expression of SMAD3/TGFBR2 which consequently promotes the proliferation, invasion, and migration in PCa cells.


Author(s):  
Wenjin Liang ◽  
Yan Wang ◽  
Qinyu Zhang ◽  
Min Gao ◽  
Haizhou Zhou ◽  
...  

Background: Hepatocellular carcinoma (HCC) cells exhibit the stemness property, which makes the patient with HCC prone to tumor recurrence and metastasis. Despite the prominent regulatory role of long non-coding RNAs (lncRNAs) in tumor stemness, the roles and molecular mechanisms of LINC00106 in HCC are poorly understood.Methods: LINC00106, let7f and periostin expression levels in tissue specimens and cell lines were assessed through qRT-PCR and immunohistochemistry (IHC). Various in vivo and in vitro assays, namely sphere/colony formation, proportion of side population cells (SP%), invasion, migration, western blot, and murine xenograft model were employed for assessing the stemness and metastatic properties of HCC cells. Luciferase reporter assays, RNA-seq, RNA pull-down, RNA immunoprecipitation (RIP) were conducted to clarificate the target gene and analyze the underlying mechanisms.Results: LINC00106 was prominently upregulated in tissues and cell lines of HCC. Patients having a high LINC00106 level exhibited a poor outcome. Under in vivo and in vitro conditions, the stemness and metastatic properties of HCC cells were augmented by LINC00106. Additionally, LINC00106 was found to sponge let7f to upregulate periostin, which lead to the activation of periostin-associated PI3K-AKT signaling pathway. Moreover, m6A methylation was found to cause LINC00106 upregulation while maintaining LINC00106 RNA transcript stability.Conclusion: m6A methylation triggers the upregulation of LINC00106, which promotes the stemness and metastasis properties in HCC cells by sponging let7f, thereby resulting in periostin activation. The findings indicate the potential of LINC00106 as a diagnostic marker and therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document