scholarly journals SNHG9 Promotes the Hepatoblastoma Tumorigenesis via miR-23a-5p/Wnt3a Axis

Author(s):  
Ramesh Bhandari ◽  
Sun Gui Feng ◽  
Liu Ya ◽  
Bian Zhixuan ◽  
Pan Quihui ◽  
...  

Abstract Background: Hepatoblastoma is common hepatic tumors occurring children between 0 – 5 years. Accumulating studies has shown lncRNA potential role in distinct cancers progression and development including the hepatoblastoma. SnoRNA host gene 9 (SNHG9) is associated the progression of distinct human cancers but, it`s specific molecular mechanisms in hepatoblastoma not unknown. Methods:In this study, we estimated SNHG9 expression on hepatoblastoma tissue and cell lines by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Next, we downregulated and upregulated the SNHG9 expression in hepatoblastoma cell lines and then determined the cell proliferation (CCK-8), colony formation, cellular apoptosis activity. The dual luciferase reporter activity, RNA immunoprecipitation (RIP), biotin RNA pulls down and Spemann’s Pearson correlation coefficient assay were performed to establish the interaction between the SNHG9, WNt3a and miR-23a-5p. Xenograft in-vivo tumorgenicity test was performed to elucidate therole of SNHG9 hepatoblastoma in tumorigenesis. SNHG9 role in Cisplatin drugs resistance in hepatoblastoma was also determined. Results:SNHG9 was significantly upregulated in hepatoblastoma tissue and cell lines. SNHG9 overexpression on HUH6 & HepG2 resulted in a significant increase in cell proliferation and clonogeneic while SNHG9 knock down resulted in a sustained inhibition of cell proliferation and clonogenic activity. Dual luciferase activity, RNA immunoprecipitation and biotin pull down confirmed the direct interaction of miR-23a-5p with SNHG9. In Xenograft tumorgenicity test showed SNHG9 downregulation significantly reduced the tumor growth on mice. ROC and Kaplan-Meier analysis showed potential prognostic and diagnostic importance of SNHG9 in hepatoblastoma.Conclusion: We concluded that SNHG9/miR-23a-5p/Wnt3a axis promotes the progression hepatoblastoma tumor.

2019 ◽  
Vol 133 (24) ◽  
pp. 2463-2479 ◽  
Author(s):  
Yongchao Li ◽  
Changfeng Li ◽  
Ruisi Xu ◽  
Yun Wang ◽  
Dandan Li ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a class of non-coding RNAs broadly expressed in cells of various species. However, the molecular mechanisms that link circRNAs with colorectal cancer (CRC) are not well understood. In the present study, we attempted to provide novel basis for targeted therapy for CRC from the aspect of circRNA–microRNA (miRNA)–mRNA interaction. Methods: We investigated the expression of circRNAs in five paired CRC tissues and adjacent non-tumor tissues by microarray analysis. Differentially expressed circRNAs were identified between CRC tissues and non-cancerous matched tissues. We focused on hsa_circ_0005100, which is located on chromosome 1 and derived from FMN2, and thus we named it as circFMN2. The expression of circFMN2 was detected in 88 CRC tissues and cell lines by quantitative real-time PCR. Functional assays were performed to evaluate the effects of circFMN2 on proliferation in vitro, and on tumorigenesis in vivo. The relationship between circFMN2 and miR-1182 was confirmed by luciferase reporter assay. Results: circFMN2 was found to be significantly up-regulated in CRC tissues and cell lines. Moreover, knockdown of circFMN2 significantly inhibited cell proliferation and migration in vitro. Bioinformatics analysis predicted that there is a circFMN2/miR-1182/hTERT axis in CRC progression. Dual-luciferase reporter system validated the direct interaction of circFMN2, miR-1182, hTERT. Western blot verified that inhibition of circFMN2 decreased hTERT expression. Importantly, we demonstrated that circFMN2 was up-regulated in serum exosomes from CRC patients. Conclusion: In conclusion, circFMN2 is a central component linking circRNAs to progression of CRC via an miR-1182/hTERT axis.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuxiang Lin ◽  
Jie Zhang ◽  
Yan Li ◽  
Wenhui Guo ◽  
Lili Chen ◽  
...  

Abstract Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Dawei Xu ◽  
Jian Yu ◽  
Guojun Gao ◽  
Guangjian Lu ◽  
Yi Zhang ◽  
...  

Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) plays important regulatory roles in many solid tumors. However, the effect of DANCR in glioma progression and underlying molecular mechanisms were not entirely explored. In the present study, we determined the expression of DANCR in glioma tissues and cell lines using qRT-PCR and further defined the biological functions. Furthermore, we used luciferase reporter assay, Western blot, and RNA immunoprecipitation (RIP) to explore the underlying mechanism. Our results showed that DANCR was significantly up-regulated in glioma tissues and cell lines (U251, U118, LN229, and U87MG). High DANCR expression was correlated with advanced tumor grade. Inhibition of DANCR suppressed the glioma cells proliferation and induced cells arrested in the G0/G1 phase. In addition, we verified that DANCR could directly interact with miR-634 in glioma cells and this interaction resulted in the inhibition of downstream of RAB1A expression. The present study demonstrated that DANCR/miR-634/RAB1A axis plays crucial roles in the progression of glioma, and DANCR might potentially serve as a therapeutic target for the treatment of glioma patients.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Zhang ◽  
Zixiang Liu ◽  
Yingchuang Tang ◽  
Xiaofeng Shao ◽  
Xi Hua ◽  
...  

Chordoma is a relatively rare malignant bone tumor with high local recurrence. To date, the mechanism remains unclear. lncRNAs play a pivotal role in tumorigenesis by acting as competitive endogenous RNAs of microRNAs. However, the biological role of lncRNA is still unclear in chordoma. In this research, our aim is to investigate the roles and regulation mechanisms of lncRNA NONHSAT114552 in chordoma development. The expression level of NONHSAT114552 and miR-320d in chordoma tissues was determined by qRT-PCR. Meantime, the correlation between NONHSAT114552 and clinical prognosis was also studied. Bioinformatics analysis and luciferase reporter assays were used to verify the relationship between NONHSAT114552 and miR-320d, and between miR-320d and Neuropilin 1 (NRP1). In addition, effects of NONHSAT114552 on chordoma cells (U-CH1 and U-CH2) proliferation and invasion and its regulation on miR-320d were also evaluated. Furthermore, the influences of NONHSAT114552/miR-320d/NRP1 axis on chordoma tumorigenesis were investigated in vivo. NONHSAT114552 was overexpressed while miR-320d was down-regulated in chordoma tissue compared to fetal nucleus pulposus. Kaplan-Meier survival analysis showed that NONHSAT114552 overexpression was associated with patients’ poor prognosis. Knockdown of NONHSAT114552 significantly suppressed chordoma cell proliferation and invasion. In vitro studies confirmed that NONHSAT114552 acted as ceRNA to regulate NRP1 by directly sponging miR-320d, thus facilitating chordoma cell proliferation and invasion. In vivo study demonstrated that NONHSAT114552 moderated chordoma growth by sponging miR-320d to regulating NRP1. Our findings indicate that lncRNA NONHSAT114552 exhibits a critical role in the tumorigenesis and development of chordoma and it may become one potential prognostic marker and therapeutic target for this disease. .


2019 ◽  
Author(s):  
Anying Wang ◽  
Naixia Hu ◽  
Yefeng Zhang ◽  
Yuanzhen Chen ◽  
Changhui Su ◽  
...  

Abstract Background: This study aimed to investigate the role of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) and related molecular mechanisms, in osteoarthritis (OA). Methods: Cartilage tissues of OA patients and healthy volunteers were isolated and cultured. After transfection with the appropriate construct, chondrocytes were classified into Blank, pcDNA3.1-NC, pcDNA3.1-MEG3, si-NC, si-MEG3, pcDNA3.1-NC + mimics NC, pcDNA3.1-MEG3 + mimics NC, pcDNA3.1-NC + miR-361-5p mimics and pcDNA3.1-MEG3 + miR-361-5p mimics groups. qRT-PCR was used to detect the expression of MEG3, miR-361-5p and FOXO1 . Western blot, luciferase reporter assay, RIP, CCK-8, and flow cytometry analysis were performed to reveal the morphology, proliferation, and apoptotic status of cartilage cells. Histological analysis and immunostaining were conducted in the OA rat model. Results: Expression of MEG3 and FOXO1 was significantly decreased in OA compared with the normal group, while the expression of miR-361-5p was increased. MEG3 might serve as a ceRNA of miR-361-5p in OA chondrocytes. Moreover, using western blot analyses and the CCK-8 assay, MEG3 was shown to target miR-361-5p/FOXO1, elevate cell proliferation, and impair cell apoptosis. Functional analysis in vivo showed that MEG3 suppressed degradation of the cartilage matrix. Conclusion: MEG3 can contribute to cell proliferation and inhibit cell apoptosis and degradation of extracellular matrix (ECM) via the miR-361-5p/FOXO1 axis in OA chondrocytes.


2021 ◽  
Author(s):  
Gang Wang ◽  
Fangzheng Zhou ◽  
Tong Ou ◽  
Haiyan Sun ◽  
Zhirui Shan ◽  
...  

Abstract Background: Accumulating evidence indicates that dysregulation of human microRNAs could serve as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma (NPC), whereas miR-182-5p has not been explored in NPC. Our study aims to elucidate the biological function of miR-182-5p in NPC in vitro and in vivo and the potential molecular mechanism involved. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine miR-182-5p expression in NPC primary tissues and cell lines. Immunohistochemistry (IHC) for ZFP36L1 was conducted in NPC samples. Western blot was used to evaluate protein expression in cell lines. A series of functional assays were carried out to evaluate the roles of miR-182-5p and ZFP36L1 in tumor development and progression of NPC. Bioinformatics tools and luciferase reporter assays were utilized to identify the potential mechanisms of action. Moreover, rescue experiments were applied to explore whether ZFP36L1 mediated the effects of miR-182-5p in NPC. Results: Up-regulation of miR-182-5p was significantly associated with tumor development and poor prognosis in patients with NPC. Functional study demonstrated that miR-182-5p overexpression enhanced, whereas suppression of miR-182-5p impeded NPC cell proliferation, migration, tumorigenesis and metastasis. Mechanistically, miR-182-5p interacted with ZFP36L1 at two sites in its 3’ un-translated region (UTR) and repressed ZFP36L1 expression in NPC. Consistently, an inverse correlation was observed between the expression levels of miR-182-5p and ZFP36L1 using clinical NPC tissues, and down-regulation of ZFP36L1 in NPC predicts poor survival. Furthermore, overexpression of miR-182-5p in NPC was attributable to the transcriptional activation effect induced by hypoxia-inducible factor 1α (HIF-1α). Conclusion: Our data suggest that miR-182-5p facilitates cell proliferation and migration in NPC through its ability to down-regulate ZFP36L1 expression, and that the HIF-1α/miR-182-5p/ZFP36L1 axis may serve as a novel therapeutic target in the management of NPC.


Sign in / Sign up

Export Citation Format

Share Document