Voice Use in Daily Life Studied With a Portable Voice Accumulator in Individuals With Parkinson's Disease and Matched Healthy Controls

2019 ◽  
Vol 62 (12) ◽  
pp. 4324-4334 ◽  
Author(s):  
Joakim Körner Gustafsson ◽  
Maria Södersten ◽  
Sten Ternström ◽  
Ellika Schalling

Purpose The purpose of this work was to study how voice use in daily life is impacted by Parkinson's disease (PD), specifically if there is a difference in voice sound level and phonation ratio during everyday activities for individuals with PD and matched healthy controls. A further aim was to study how variations in environmental noise impact voice use. Method Long-term registration of voice use during 1 week in daily life was performed for 21 participants with PD (11 male, 10 female) and 21 matched healthy controls using the portable voice accumulator VoxLog. Voice use was assessed through registrations of spontaneous speech in different ranges of environmental noise in daily life and in a controlled studio recording setting. Results Individuals with PD use their voice 50%–60% less than their matched healthy controls in daily life. The difference increases in high levels of environmental noise. Individuals with PD used an average voice sound level in daily life that was 8.11 dB (female) and 6.7 dB (male) lower than their matched healthy controls. Difference in mean voice sound level for individuals with PD and controls during spontaneous speech during a controlled studio registration was 3.0 dB for the female group and 4.1 dB for the male group. Conclusions The observed difference in voice use in daily life between individuals with PD and matched healthy controls is a 1st step to objectively quantify the impact of PD on communicative participation. The variations in voice use in different levels of environmental noise and when comparing controlled and variable environments support the idea that the study of voice use should include methods to assess function in less controlled situations outside the clinical setting.

2021 ◽  
pp. 1-11
Author(s):  
Cristina Colón-Semenza ◽  
Daniel Fulford ◽  
Terry Ellis

Background: People with Parkinson’s disease (PwPD) are less active than their age-matched peers. Non-motor symptoms, specifically, deficient motivation, may influence decision-making for exercise due to the impaired mesolimbic dopaminergic pathway. Objective: The purpose of this study was to determine if effort-based decision-making for physical effort was different in PwPD compared to healthy controls. We sought to determine the relationship between effort-based decision making for exercise and a discrete motor task as well as the impact of components of motivation on decision-making for physical effort in PwPD. Methods: An effort-based decision-making paradigm using a discrete motor task (button pressing) and a continuous exercise task (cycling) was implemented in 32 PwPD and 23 healthy controls. Components of motivation were measured using the Apathy Scale and the Temporal Experience of Pleasure Scale- Anticipatory Pleasure scale. Results: The presence of Parkinson’s disease (PD) did not moderate decisions for either physical effort task. There was a moderate correlation between decisions for both tasks, within each group. The anticipation of pleasure and apathy were predictors of decisions for both physical effort tasks in PwPD, but not in healthy controls. Conclusion: PwPD responded similarly to effort and reward valuations compared to those without PD. Individuals were consistent in their decisions, regardless of the physical effort task. The anticipation of pleasure and apathy were significant predictors of decisions for exercise in PwPD only. Increased anticipation of pleasure, reduction of apathy, and the use of rewards may enhance engagement in high effort exercise among PwPD.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6618
Author(s):  
Lukas Adamowicz ◽  
F. Isik Karahanoglu ◽  
Christopher Cicalo ◽  
Hao Zhang ◽  
Charmaine Demanuele ◽  
...  

The ability to perform sit-to-stand (STS) transfers has a significant impact on the functional mobility of an individual. Wearable technology has the potential to enable the objective, long-term monitoring of STS transfers during daily life. However, despite several recent efforts, most algorithms for detecting STS transfers rely on multiple sensing modalities or device locations and have predominantly been used for assessment during the performance of prescribed tasks in a lab setting. A novel wavelet-based algorithm for detecting STS transfers from data recorded using an accelerometer on the lower back is presented herein. The proposed algorithm is independent of device orientation and was validated on data captured in the lab from younger and older healthy adults as well as in people with Parkinson’s disease (PwPD). The algorithm was then used for processing data captured in free-living conditions to assess the ability of multiple features extracted from STS transfers to detect age-related group differences and assess the impact of monitoring duration on the reliability of measurements. The results show that performance of the proposed algorithm was comparable or significantly better than that of a commercially available system (precision: 0.990 vs. 0.868 in healthy adults) and a previously published algorithm (precision: 0.988 vs. 0.643 in persons with Parkinson’s disease). Moreover, features extracted from STS transfers at home were able to detect age-related group differences at a higher level of significance compared to data captured in the lab during the performance of prescribed tasks. Finally, simulation results showed that a monitoring duration of 3 days was sufficient to achieve good reliability for measurement of STS features. These results point towards the feasibility of using a single accelerometer on the lower back for detection and assessment of STS transfers during daily life. Future work in different patient populations is needed to evaluate the performance of the proposed algorithm, as well as assess the sensitivity and reliability of the STS features.


2020 ◽  
Vol 10 (4) ◽  
pp. 1601-1610
Author(s):  
Jaimie A. Roper ◽  
Abigail C. Schmitt ◽  
Hanzhi Gao ◽  
Ying He ◽  
Samuel Wu ◽  
...  

Background: The impact of concurrent osteoarthritis on mobility and mortality in individuals with Parkinson’s disease is unknown. Objective: We sought to understand to what extent osteoarthritis severity influenced mobility across time and how osteoarthritis severity could affect mortality in individuals with Parkinson’s disease. Methods: In a retrospective observational longitudinal study, data from the Parkinson’s Foundation Quality Improvement Initiative was analyzed. We included 2,274 persons with Parkinson’s disease. The main outcomes were the effects of osteoarthritis severity on functional mobility and mortality. The Timed Up and Go test measured functional mobility performance. Mortality was measured as the osteoarthritis group effect on survival time in years. Results: More individuals with symptomatic osteoarthritis reported at least monthly falls compared to the other groups (14.5% vs. 7.2% without reported osteoarthritis and 8.4% asymptomatic/minimal osteoarthritis, p = 0.0004). The symptomatic group contained significantly more individuals with low functional mobility (TUG≥12 seconds) at baseline (51.5% vs. 29.0% and 36.1%, p < 0.0001). The odds of having low functional mobility for individuals with symptomatic osteoarthritis was 1.63 times compared to those without reported osteoarthritis (p < 0.0004); and was 1.57 times compared to those with asymptomatic/minimal osteoarthritis (p = 0.0026) after controlling pre-specified covariates. Similar results hold at the time of follow-up while changes in functional mobility were not significant across groups, suggesting that osteoarthritis likely does not accelerate the changes in functional mobility across time. Coexisting symptomatic osteoarthritis and Parkinson’s disease seem to additively increase the risk of mortality (p = 0.007). Conclusion: Our results highlight the impact and potential additive effects of symptomatic osteoarthritis in persons with Parkinson’s disease.


Author(s):  
Suman Rohilla ◽  
Ranju Bansal ◽  
Puneet Chauhan ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz

Background: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson’s disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson’s disease due to their potent A2A AR antagonistic properties. Objective: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. Methods: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. Results: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly longlasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. Conclusion: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%), slalom walking (IC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%), and turning (IC: recall $$\ge$$ ≥ 85%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 91%; FC: recall $$\ge$$ ≥ 84%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


2021 ◽  
Author(s):  
Natalia Pelizari Novaes ◽  
Joana Bisol Balardin ◽  
Fabiana Campos Hirata ◽  
Luciano Melo ◽  
Edson Amaro ◽  
...  

2021 ◽  
pp. 000313482198903
Author(s):  
Mitsuru Ishizuka ◽  
Norisuke Shibuya ◽  
Kazutoshi Takagi ◽  
Hiroyuki Hachiya ◽  
Kazuma Tago ◽  
...  

Objective To explore the impact of appendectomy history on emergence of Parkinson’s disease (PD). Background Although there are several studies to investigate the relationship between appendectomy history and emergence of PD, the results are still controversial. Methods We performed a comprehensive electronic search of the literature (the Cochrane Library, PubMed, and the Web of Science) up to April 2020 to identify studies that had employed databases allowing comparison of emergence of PD between patients with and those without appendectomy history. To integrate the impact of appendectomy history on emergence of PD, a meta-analysis was performed using random-effects models to calculate the risk ratio (RR) and 95% confidence interval (CI) for the selected studies, and heterogeneity was analyzed using I2 statistics. Results Four studies involving a total of 6 080 710 patients were included in this meta-analysis. Among 1 470 613 patients with appendectomy history, 1845 (.13%) had emergences of PD during the observation period, whereas among 4 610 097 patients without appendectomy history, 6743 (.15%) had emergences of PD during the observation period. These results revealed that patients with appendectomy history and without appendectomy had almost the same emergence of PD (RR, 1.02; 95% CI, .87-1.20; P = .83; I2 = 87%). Conclusion This meta-analysis has demonstrated that there was no significant difference in emergence of PD between patients with and those without appendectomy history.


2021 ◽  
pp. 1-5
Author(s):  
Jonathan R. Isaacson ◽  
Salima Brillman ◽  
Nisha Chhabria ◽  
Stuart H. Isaacson

Background: The diagnosis of Parkinson’s disease (PD) is primarily clinical, but in cases of diagnostic uncertainty, evaluation of nigrostriatal dopaminergic degeneration (NSDD) by imaging of the dopamine transporter using DaTscan with single-photon emission computed tomography (SPECT) brain imaging may be helpful. Objective/Methods: In the current paper, we describe clinical scenarios for which DaTscan imaging was used in a prospective case series of 201 consecutive patients in whom a movement disorder specialist ordered DaTscan imaging to clarify NSDD. We describe the impact of DaTscan results on changing or confirming pre-DaTscan clinical diagnosis and on post-DaTscan treatment changes. Results/Conclusion: DaTscan imaging can be useful in several clinical scenarios to determine if NSDD is present. These include in patients with early subtle symptoms, suboptimal response to levodopa, prominent action tremor, drug-induced parkinsonism, and in patients with lower extremity or other less common parkinsonism clinical presentations. We also found DaTscan imaging to be useful to determine underlying NSDD in patients with PD diagnosis for 3-5 years but without apparent clinical progression or development of motor fluctuations. Overall, in 201 consecutive patients with clinically questionable NSDD, DaTscan was abnormal in 58.7% of patients, normal in 37.8%, and inconclusive in 3.5%. DaTscan imaging changed clinical diagnosis in 39.8% of patients and led to medication therapy changes in 70.1% of patients.


2021 ◽  
pp. 1-9
Author(s):  
Kim E. Hawkins ◽  
Elodie Chiarovano ◽  
Serene S. Paul ◽  
Ann M Burgess ◽  
Hamish G. MacDougall ◽  
...  

BACKGROUND: Parkinson’s disease (PD) is a common multi-system neurodegenerative disorder with possible vestibular system dysfunction, but prior vestibular function test findings are equivocal. OBJECTIVE: To report and compare vestibulo-ocular reflex (VOR) gain as measured by the video head impulse test (vHIT) in participants with PD, including tremor dominant and postural instability/gait dysfunction phenotypes, with healthy controls (HC). METHODS: Forty participants with PD and 40 age- and gender-matched HC had their vestibular function assessed. Lateral and vertical semicircular canal VOR gains were measured with vHIT. VOR canal gains between PD participants and HC were compared with independent samples t-tests. Two distinct PD phenotypes were compared to HC using Tukey’s ANOVA. The relationship of VOR gain with PD duration, phenotype, severity and age were investigated using logistic regression. RESULTS: There were no significant differences between groups in vHIT VOR gain for lateral or vertical canals. There was no evidence of an effect of PD severity, phenotype or age on VOR gains in the PD group. CONCLUSION: The impulsive angular VOR pathways are not significantly affected by the pathophysiological changes associated with mild to moderate PD.


Sign in / Sign up

Export Citation Format

Share Document