The Intelligibility of Speech by Hearing Aids on Inductance Loop and Microphone Modes of Signal Reception

1970 ◽  
Vol 13 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Steven W. Vargo ◽  
Glenn Taylor ◽  
J. Curtis Tannahill ◽  
Sally A. Plummer

A comparative evaluation was done on the speech intelligibility of two hearing aids, one with an inductance loop and the other with a conventional body unit. Each aid received and reproduced 50 monosyllables (CID W 22) on both inductance coil and microphone input modes. The resultant 200 words were tape-recorded from the output of a 2cc coupler and then evaluated by 196 students. Words correctly written served as the criterion measure. Data analysis revealed significantly more intelligible speech for the conventional hearing aid for both inductance coil and microphone inputs. Further, the loop hearing aid was significantly less intelligible on its inductance coil setting than on microphone reception.

1986 ◽  
Vol 51 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Donna M. Risberg ◽  
Robyn M. Cox

A custom in-the-ear (ITE) hearing aid fitting was compared to two over-the-ear (OTE) hearing aid fittings for each of 9 subjects with mild to moderately severe hearing losses. Speech intelligibility via the three instruments was compared using the Speech Intelligibility Rating (SIR) test. The relationship between functional gain and coupler gain was compared for the ITE and the higher rated OTE instruments. The difference in input received at the microphone locations of the two types of hearing aids was measured for 10 different subjects and compared to the functional gain data. It was concluded that (a) for persons with mild to moderately severe hearing losses, appropriately adjusted custom ITE fittings typically yield speech intelligibility that is equal to the better OTE fitting identified in a comparative evaluation; and (b) gain prescriptions for ITE hearing aids should be adjusted to account for the high-frequency emphasis associated with in-the-concha microphone placement.


Author(s):  
Isiaka Ajewale Alimi

Digital hearing aids addresses the issues of noise and speech intelligibility that is associated with the analogue types. One of the main functions of the digital signal processor (DSP) of digital hearing aid systems is noise reduction which can be achieved by speech enhancement algorithms which in turn improve system performance and flexibility. However, studies have shown that the quality of experience (QoE) with some of the current hearing aids is not up to expectation in a noisy environment due to interfering sound, background noise and reverberation. It is also suggested that noise reduction features of the DSP can be further improved accordingly. Recently, we proposed an adaptive spectral subtraction algorithm to enhance the performance of communication systems and address the issue of associated musical noise generated by the conventional spectral subtraction algorithm. The effectiveness of the algorithm has been confirmed by different objective and subjective evaluations. In this study, an adaptive spectral subtraction algorithm is implemented using the noise-estimation algorithm for highly non-stationary noisy environments instead of the voice activity detection (VAD) employed in our previous work due to its effectiveness. Also, signal to residual spectrum ratio (SR) is implemented in order to control the amplification distortion for speech intelligibility improvement. The results show that the proposed scheme gives comparatively better performance and can be easily employed in digital hearing aid system for improving speech quality and intelligibility.


2021 ◽  
Vol 11 (2) ◽  
pp. 200-206
Author(s):  
Gennaro Auletta ◽  
Annamaria Franzè ◽  
Carla Laria ◽  
Carmine Piccolo ◽  
Carmine Papa ◽  
...  

Background: The aim of this study was to compare, in users of bimodal cochlear implants, the performance obtained using their own hearing aids (adjusted with the standard NAL-NL1 fitting formula) with the performance using the Phonak Naìda Link Ultra Power hearing aid adjusted with both NAL-NL1 and a new bimodal system (Adaptive Phonak Digital Bimodal (APDB)) developed by Advanced Bionics and Phonak Corporations. Methods: Eleven bimodal users (Naìda CI Q70 + contralateral hearing aid) were enrolled in our study. The users’ own hearing aids were replaced with the Phonak Naìda Link Ultra Power and fitted following the new formula. Speech intelligibility was assessed in quiet and noisy conditions, and comparisons were made with the results obtained with the users’ previous hearing aids and with the Naída Link hearing aids fitted with the NAL-NL1 generic prescription formula. Results: Using Phonak Naìda Link Ultra Power hearing aids with the Adaptive Phonak Digital Bimodal fitting formula, performance was significantly better than that with the users’ own rehabilitation systems, especially in challenging hearing situations for all analyzed subjects. Conclusions: Speech intelligibility tests in quiet settings did not reveal a significant difference in performance between the new fitting formula and NAL-NL1 fittings (using the Naída Link hearing aids), whereas the performance difference between the two fittings was very significant in noisy test conditions.


2020 ◽  
Vol 5 (1) ◽  
pp. 36-39
Author(s):  
Mariya Yu. Boboshko ◽  
Irina P. Berdnikova ◽  
Natalya V. Maltzeva

Objectives -to determine the normative data of sentence speech intelligibility in a free sound field and to estimate the applicability of the Russian Matrix Sentence test (RuMatrix) for assessment of the hearing aid fitting benefit. Material and methods. 10 people with normal hearing and 28 users of hearing aids with moderate to severe sensorineural hearing loss were involved in the study. RuMatrix test both in quiet and in noise was performed in a free sound field. All patients filled in the COSI questionnaire. Results. The hearing impaired patients were divided into two subgroups: the 1st with high and the 2nd with low hearing aid benefit, according to the COSI questionnaire. In the 1st subgroup, the threshold for the sentence intelligibility in quiet was 34.9 ± 6.4 dB SPL, and in noise -3.3 ± 1.4 dB SNR, in the 2nd subgroup 41.7 ± 11.5 dB SPL and 0.15 ± 3.45 dB SNR, respectively. The significant difference between the data of both subgroups and the norm was registered (p


1980 ◽  
Vol 89 (5_suppl) ◽  
pp. 79-83
Author(s):  
Richard Lippmann

Following the Harvard master hearing aid study in 1947 there was little research on linear amplification. Recently, however, there have been a number of studies designed to determine the relationship between the frequency-gain characteristic of a hearing aid and speech intelligibility for persons with sensorineural hearing loss. These studies have demonstrated that a frequency-gain characteristic that rises at a rate of 6 dB/octave, as suggested by the Harvard study, is not optimal. They have also demonstrated that high-frequency emphasis of 10–40 dB above 500–1000 Hz is beneficial. Most importantly, they have demonstrated that hearing aids as they are presently being fit do not provide maximum speech intelligibility. Percent word correct scores obtained with the best frequency-gain characteristics tested in various studies have been found to be 9 to 19 percentage points higher than scores obtained with commercial aids owned by subjects. This increase in scores is equivalent to an increase in signal-to-noise ratio of 10 to 20 dB. This is a significant increase which could allow impaired listeners to communicate in many situations where they presently cannot. These results demonstrate the need for further research on linear amplification aimed at developing practical suggestions for fitting hearing aids.


1990 ◽  
Vol 33 (4) ◽  
pp. 676-689 ◽  
Author(s):  
David A. Fabry ◽  
Dianne J. Van Tasell

The Articulation Index (AI) was used to evaluate an “adaptive frequency response” (AFR) hearing aid with amplification characteristics that automatically change to become more high-pass with increasing levels of background noise. Speech intelligibility ratings of connected discourse by normal-hearing subjects were predicted well by an empirically derived AI transfer function. That transfer function was used to predict aided speech intelligibility ratings by 12 hearing-impaired subjects wearing a master hearing aid with the Argosy Manhattan Circuit enabled (AFR-on) or disabled (AFR-off). For all subjects, the AI predicted no improvements in speech intelligibility for the AFR-on versus AFR-off condition, and no significant improvements in rated intelligibility were observed. The ability of the AI to predict aided speech intelligibility varied across subjects. However, ratings from every hearing-impaired subject were related monotonically to AI. Therefore, AI calculations may be used to predict relative—but not absolute—levels of speech intelligibility produced under different amplification conditions.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Haniyeh Salehi ◽  
Vijay Parsa ◽  
Paula Folkeard

Wireless remote microphones (RMs) transmit the desired acoustic signal to the hearing aid (HA) and facilitate enhanced listening in challenging environments. Fitting and verification of RMs, and benchmarking the relative performance of different RM devices in varied acoustic environments are of significant interest to Audiologists and RM developers. This paper investigates the application of instrumental speech intelligibility and quality metrics for characterizing the RM performance in two acoustic environments with varying amounts of background noise and reverberation. In both environments, two head and torso simulators (HATS) were placed 2 m apart, where one HATS served as the talker and the other served as the listener. Four RM systems were interfaced separately with a HA programmed to match the prescriptive targets for the N4 standard audiogram and placed on the listener HATS. The HA output in varied acoustic conditions was recorded and analyzed offline through computational models predicting speech intelligibility and quality. Results showed performance differences among the four RMs in the presence of noise and/or reverberation, with one RM exhibiting significantly better performance. Clinical implications and applications of these results are discussed.


2020 ◽  
Vol 31 (05) ◽  
pp. 354-362
Author(s):  
Paula Folkeard ◽  
Marlene Bagatto ◽  
Susan Scollie

Abstract Background Hearing aid prescriptive methods are a commonly recommended component of evidence-based preferred practice guidelines and are often implemented in the hearing aid programming software. Previous studies evaluating hearing aid manufacturers' software-derived fittings to prescriptions have shown significant deviations from targets. However, few such studies examined the accuracy of software-derived fittings for the Desired Sensation Level (DSL) v5.0 prescription. Purpose The purpose of this study was to evaluate the accuracy of software-derived fittings to the DSL v5.0 prescription, across a range of hearing aid brands, audiograms, and test levels. Research Design This study is a prospective chart review with simulated cases. Data Collection and Analysis A set of software-derived fittings were created for a six-month-old test case, across audiograms ranging from mild to profound. The aided output from each fitting was verified in the test box at 55-, 65-, 75-, and 90-dB SPL, and compared with DSL v5.0 child targets. The deviations from target across frequencies 250-6000 Hz were calculated, together with the root-mean-square error (RMSE) from target. The aided Speech Intelligibility Index (SII) values generated for the speech passages at 55- and 65-dB SPL were compared with published norms. Study Sample Thirteen behind-the-ear style hearing aids from eight manufacturers were tested. Results The amount of deviation per frequency was dependent on the test level and degree of hearing loss. Most software-derived fittings for mild-to-moderately severe hearing losses fell within ± 5 dB of the target for most frequencies. RMSE results revealed more than 84% of those hearing aid fittings for the mild-to-moderate hearing losses were within 5 dB at all test levels. Fittings for severe to profound hearing losses had the greatest deviation from target and RMSE. Aided SII values for the mild-to-moderate audiograms fell within the normative range for DSL pediatric fittings, although they fell within the lower portion of the distribution. For more severe losses, SII values for some hearing aids fell below the normative range. Conclusions In this study, use of the software-derived manufacturers' fittings based on the DSL v5.0 pediatric targets set most hearing aids within a clinically acceptable range around the prescribed target, particularly for mild-to-moderate hearing losses. However, it is likely that clinician adjustment based on verification of hearing aid output would be required to optimize the fit to target, maximize aided SII, and ensure appropriate audibility across all degrees of hearing loss.


1992 ◽  
Vol 35 (3) ◽  
pp. 686-693 ◽  
Author(s):  
D. Michael McDaniel ◽  
Robyn M. Cox

The SIR test was created for use in hearing aid comparisons. The test protocol obtains listener judgments of the intelligibility of connected speech passages. This study was conducted to evaluate the effectiveness of the SIR test in differentiating among hearing aids Specific research questions were (a) Is the sensitivity of the SIR test sufficient for differentiating among very similar and slightly dissimilar hearing aids? (b) Does the SIR test result In reliable heanng aid rankings? and (c) What are the effects of using shortened connected speech passages? Ten listeners with hearing impairments rated the intelligibility of both full-length and shortened SIR test passages while wearing each of four individually selected hearing aids representing three different frequency/gain prescriptions. Results suggested that the SIR test is capable of differentiating among slightly dissimilar hearing aids and that hearing aid rankings resulting from speech Intelligibility ratings were reliable. The decision to use full-length or shortened SIR test passages depends on the outcome the user wishes to maximize Under the conditions used n this study, maximum sensitivity was achieved with ratings from five shortened passages, whereas maximum reliability was obtained with three full-length passages.


2021 ◽  
Vol 42 (03) ◽  
pp. 295-308
Author(s):  
David A. Fabry ◽  
Achintya K. Bhowmik

AbstractThis article details ways that machine learning and artificial intelligence technologies are being integrated in modern hearing aids to improve speech understanding in background noise and provide a gateway to overall health and wellness. Discussion focuses on how Starkey incorporates automatic and user-driven optimization of speech intelligibility with onboard hearing aid signal processing and machine learning algorithms, smartphone-based deep neural network processing, and wireless hearing aid accessories. The article will conclude with a review of health and wellness tracking capabilities that are enabled by embedded sensors and artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document