Oestradiol-Dependent and -Independent Modulation of Tyrosine Hydroxylase mRNA Levels in Subpopulations of A1 and A2 Neurones with Oestrogen Receptor (ER)α and ERβ Gene Expression

2003 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
M. A. Curran-Rauhut ◽  
S. L. Petersen
2019 ◽  
Vol 31 (1) ◽  
pp. 152
Author(s):  
D. N. Tran ◽  
J.-H. Lee ◽  
Y.-M. Yoo ◽  
E.-M. Jung ◽  
C. Ahn ◽  
...  

Miscarriage due to blastocyst implantation failure occurs in up to two-thirds of all miscarriage cases in humans. Calcium (Ca2+) has been shown to involve many cellular signal transduction pathways as well as regulation of cell adhesion, which is necessary for the physiology process of endometrial epithelial cell transformation and stromal cell decidualization during embryo implantation. Exposure to endocrine-disrupting chemicals (ED) can regulate the expression of genes associated with calcium transport in during pregnancy such as TRPV5, TRPV6, PMCA, and NCX1. Additionally, exposure to ED during early gestation results in disrupted intrauterine implantation, uterine receptive, leading to implantation failure. In this study, oestrogen (E2), bisphenol A (BPA), octylphenol (OP), and/or ICI 182,780 (oestrogen receptor antagonist, ICI) were injected subcutaneously from gestation Day 1 to gestation Day 3 post coitus. The number of implantation sites was significantly lower in the OP group, and no implantation site was observed in the E2 and ED+ICI groups. There were differences in the expression of calcium transient transport channel between maternal uterine and implantation. The level of TRPV6 and TRPV5 mRNA and protein was significantly increased by ED and/or ICI treatment in the uterus. The levels of TRPV5 and TRPV6 gene expression were significantly increased by ED with/without ICI treatment in the uterus. However, TRPV5 and TRPV6 gene expression was significantly lower in implantation site samples. The NCX1 and PMCA1 mRNA levels were significantly decreased by OP and BPA in the implantation site samples. Both mRNA and protein levels of MUC1 were markedly higher in all groups, except the BPA group when compared with the vehicle group in the uterus. The LIF and HOXA-10 mRNA were significantly low in E2; BPA+ICI; OP; and/or ICI in both the uterus and implantation site. Expression of the oestrogen receptor (ERa) and progesterone receptor (PR) was significantly lower in all groups except the BPA group when compared with the vehicle group. Taken together, E2, BPA, and OP disrupt the success of implantation through altered expression of calcium transport genes.


Endocrinology ◽  
2000 ◽  
Vol 141 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Joseph P. Moore ◽  
Aihua Cai ◽  
Mary Ellen Hostettler ◽  
Lydia A. Arbogast ◽  
James L. Voogt ◽  
...  

Abstract The human GH-releasing hormone (hGHRH) transgenic mouse has a hyperplastic anterior pituitary gland that eventually develops into an adenoma. We showed previously that the number of lactotrophs in the male hGHRH transgenic mouse is increased 2-fold, yet there is no concomitant increase in plasma levels of PRL. To further elucidate underlying changes in lactotroph function in the hGHRH transgenic mouse, the objectives of this study were to 1) examine the relative differences in PRL gene expression in transgenic mice and their siblings, 2) quantify PRL secretion at the level of the individual cell, 3) determine whether tyrosine hydroxylase gene expression and/or activity are altered in the hypothalamus of transgenic mice, and 4) assess dopamine receptor gene expression and functional sensitivity in lactotrophs of transgenic mice. Total PRL messenger RNA (mRNA) levels were increased nearly 5-fold in the hGHRH transgenic mouse, whereas the concentrations of PRL mRNA (PRL mRNA per μg total RNA) were unchanged. In contrast, total PRL contents were unchanged, whereas the concentrations of PRL (micrograms of PRL per mg total protein) were decreased 3-fold. Hypothalamic tyrosine hydroxylase steady state mRNA levels were not altered in the hGHRH transgenic mice, but hypothalamic tyrosine hydroxylase activity was increased 2-fold in transgenic mice. Dopamine D2 receptor mRNA concentrations in the anterior pituitary were increased 2.5-fold in hGHRH transgenic mice, and total pituitary D2 receptor mRNA levels were increased nearly 10-fold. Furthermore, the basal secretory capacity of lactotrophs from transgenic mice was increased significantly at the level of the single cell, and dopamine inhibited the secretion of PRL to a greater extent in hGHRH transgenic mice. Thus, although the total number of lactotrophs is increased 2-fold in hGHRH transgenic mice, the present data are consistent with the hypothesis that increased hypothalamic dopamine synthesis and release coupled with an increase in D2 dopamine receptor gene expression and functional sensitivity in the pituitary result in normal plasma levels of PRL.


1991 ◽  
Vol 261 (6) ◽  
pp. R1455-R1460
Author(s):  
T. L. Krukoff ◽  
Y. Zheng

The gene expression of tyrosine hydroxylase (TH) and neuropeptide Y (NPY) was studied in prevertebral ganglia and adrenal glands of adult male rats during the development of renal hypertension (removal of 1 kidney/constriction of other kidney). Only tissues from rats with arterial pressures significantly elevated by day 3 were compared with those from controls. At 4 or 5 days after renal surgery, superior cervical ganglia, celiac-mesenteric plexus, adrenal glands, and stellate ganglia were surgically removed from nonfixed rats for Northern blot analysis or from perfusion-fixed rats for in situ hybridization. In all tissues, levels of TH mRNA were decreased in hypertensive rats; cells with decreased levels were scattered throughout each tissue. In contrast, levels of NPY mRNA were unchanged in hypertensive rats compared with controls. Changes in TH mRNA levels suggest that the developing phase of renal hypertension is associated with a decrease in sympathetic outflow to the periphery. In contrast, the failure of NPY mRNA levels to change suggests a different regulatory mechanism for NPY expression or a different role for NPY in sympathetic neurotransmission.


2015 ◽  
Vol 87 (1) ◽  
pp. 343-350 ◽  
Author(s):  
NATASA SPASOJEVIC ◽  
PREDRAG JOVANOVIC ◽  
SLADJANA DRONJAK

We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.


Thorax ◽  
2001 ◽  
Vol 56 (7) ◽  
pp. 541-548
Author(s):  
E M Glare ◽  
M Divjak ◽  
M J Bailey ◽  
E H Walters

BACKGROUNDAsthma has been described as an eosinophilic bronchitis driven by interleukin(IL)-4 and IL-5. The quantification of cytokine mRNA levels in airway samples has been confounded by housekeeping gene expression which differs between and within asthmatics and controls.METHODSThe usefulness of competitive reverse transcriptase-polymerase chain reaction (RT-PCR) that is independent of housekeeping gene expression for quantitating the mRNA for interferon (IFN)γ, IL-2, IL-5, IL-4 and its receptor antagonist encoding splicing variant IL-4δ2 was determined in a cross sectional study of 45 normal control subjects and 111 with asthma.RESULTSAtopic controls and atopic asthmatic subjects expressed more IL-5 than non-atopic controls (p<0.02) in bronchoalveolar lavage (BAL) cells, but not in biopsy specimens. IL-5 mRNA expression in BAL cells from asthmatic subjects using inhaled corticosteroids (ICS) was significantly lower than those not receiving ICS (p=0.04). IL-2 mRNA levels differed with steroid use in biopsy specimens but not in BAL cells. IFNγ, IL-4, and IL-4δ2 mRNA levels did not differ between any groups and were not affected by steroid use. IL-4 and IL-4δ2 mRNA levels were positively correlated (p<0.0001), suggesting coordinated transcription.CONCLUSIONSWhile the signal differentiation of competitive PCR in asthma may rival that of in situ hybridisation and immunohistochemistry, the method is expensive and wasteful of material.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1427
Author(s):  
Tiago Barros Afonso ◽  
Lúcia Chaves Simões ◽  
Nelson Lima

Biofilms can be considered the main source of microorganisms in drinking water distribution systems (DWDS). The ecology of a biofilm is dependent on a variety of factors, including the presence of microbial metabolites excreted by its inhabitants. This study reports the effect of the Gram-negative bacteria Methylobacterium oryzae on the idh gene expression levels and patulin production of Penicillium expansum mature biofilms. For this purpose, a RT-qPCR method to quantify idh mRNA levels was applied. In addition, the idh expression levels were compared with the patulin production. The results obtained revealed that the effect of the bacterium on pre-established P. expansum biofilms is dependent on the time of interaction. More mature P. expansum biofilms appear to be more resistant to the inhibitory effect that M. oryzae causes towards idh gene expression and patulin production. A positive trend was observed between the idh expression and patulin production values. The results indicate that M. oryzae affects patulin production by acting at the transcriptional level of the idh gene.


1998 ◽  
Vol 275 (4) ◽  
pp. G717-G722 ◽  
Author(s):  
Wisam F. Zakko ◽  
Carl L. Berg ◽  
John L. Gollan ◽  
Richard M. Green

Gluconeogenesis and glycogenolysis are essential hepatic functions required for glucose homeostasis. During the initial phase of hepatic regeneration, the immediate-early genes (IEG) are rapidly expressed, and the IEG RL-1 encodes for glucose-6-phosphatase (G-6- Pase). G-6- Pase is a microsomal enzyme essential for gluconeogenesis and glycogenolysis. This study employs a partial-hepatectomy model to examine the expression and activity of G-6- Pase. After partial hepatectomy, rat hepatic G-6- Pase gene expression is transcriptionally regulated, and mRNA levels are increased ≈30-fold. However, in contrast to this rapid gene induction, microsomal enzyme activity is unchanged after partial hepatectomy. Western blotting demonstrates that microsomal G-6- Pase protein expression is also unchanged after partial hepatectomy, and similar results are also noted in whole liver homogenate. Thus, despite marked induction in gene expression of the IEG G-6- Pase after partial hepatectomy, protein expression and enzyme activity remain unchanged. These data indicate that, although this hepatocyte IEG is transcriptionally regulated, the physiologically important level of regulation is posttranscriptional. This highlights the importance of correlating gene expression of IEG with protein expression and physiological function.


2008 ◽  
Vol 1 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Vicky Lahaie-Collins ◽  
Julie Bournival ◽  
Marilyn Plouffe ◽  
Julie Carange ◽  
Maria-Grazia Martinoli

Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+) ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.


1999 ◽  
Vol 276 (4) ◽  
pp. C946-C954 ◽  
Author(s):  
Li Li ◽  
Ji Li ◽  
Jaladanki N. Rao ◽  
Minglin Li ◽  
Barbara L. Bass ◽  
...  

The nuclear phosphoprotein p53 acts as a transcription factor and is involved in growth inhibition and apoptosis. The present study was designed to examine the effect of decreasing cellular polyamines on p53 gene expression and apoptosis in small intestinal epithelial (IEC-6) cells. Cells were grown in DMEM containing 5% dialyzed fetal bovine serum in the presence or absence of α-difluoromethylornithine (DFMO), a specific inhibitor of polyamine biosynthesis, for 4, 6, and 12 days. The cellular polyamines putrescine, spermidine, and spermine in DFMO-treated cells decreased dramatically at 4 days and remained depleted thereafter. Polyamine depletion by DFMO was accompanied by a significant increase in expression of the p53 gene. The p53 mRNA levels increased 4 days after exposure to DFMO, and the maximum increases occurred at 6 and 12 days after exposure. Increased levels of p53 mRNA in DFMO-treated cells were paralleled by increases in p53 protein. Polyamines given together with DFMO completely prevented increased expression of the p53 gene. Increased expression of the p53 gene in DFMO-treated cells was associated with a significant increase in G1 phase growth arrest. In contrast, no features of programmmed cell death were identified after polyamine depletion: no internucleosomal DNA fragmentation was observed, and no morphological features of apoptosis were evident in cells exposed to DFMO for 4, 6, and 12 days. These results indicate that 1) decreasing cellular polyamines increases expression of the p53 gene and 2) activation of p53 gene expression after polyamine depletion does not induce apoptosis in intestinal crypt cells. These findings suggest that increased expression of the p53 gene may play an important role in growth inhibition caused by polyamine depletion.


Sign in / Sign up

Export Citation Format

Share Document