Improvement of flow pattern in multi-unit pumping station with side-intake based on cfd numerical simulation

Author(s):  
Can Luo ◽  
Chao Liu
Author(s):  
Xueqing Shi ◽  
Daniel (Jian) Sun ◽  
Ying Zhang ◽  
Jing Xiong ◽  
Zhonghua Zhao

Transportation has become one of the primary sources of urban atmospheric pollutants and it causes severe diseases among city residents. This study focuses on assessing the pollutant dispersion pattern using computational fluid dynamics (CFD) numerical simulation, with the effect and results validated by the results from wind tunnel experiments. First, the wind tunnel experiment was carefully designed to preliminarily assess the flow pattern of vehicle emissions. Next, the spatiotemporal distribution of pollutant concentrations around the motor vehicle was modeled using a CFD numerical simulation. The pollutant concentration contours indicated that the diffusion process of carbon monoxide mainly occurred in the range of 0−2 m above the ground. Meanwhile, to verify the correctness of the CFD simulation, pressure distributions of seven selected points that were perpendicular along the midline of the vehicle surface were obtained from both the wind tunnel experiment and the CFD numerical simulation. The Pearson correlation coefficient between the numerical simulation and the wind tunnel measurement was 0.98, indicating a strong positive correlation. Therefore, the distribution trend of all pressure coefficients in the numerical simulation was considered to be consistent with those from the measurements. The findings of this study could shed light on the concentration distribution of platoon-based vehicles and the future application of CFD simulations to estimate the concentration of pollutants along urban street canyons.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2025
Author(s):  
Ahmed Nasr ◽  
Fan Yang ◽  
Yiqi Zhang ◽  
Tieli Wang ◽  
Mahmoud Hassan

To improve the problem of turbulence in the forebay of the lateral inlet pumping station, a typical lateral inlet pumping station project in Xuzhou, Jiangsu Province, China was taken as the research object. The forebay of the pumping station is a building connecting the river channel and the pumping station into the water tank. Based on the Reynolds-averaged Navier-Stokes (RANS) law and the turbulence model, the computational fluid dynamics method (CFD) technology compares and analyzes the numerical simulation with or without rectification measures for the forebay of the lateral intake pumping station when multiple units are operating. The three-dimensional model was created by SolidWorks modeling software and the numerical simulation simulated by CFX-ANSYS. To alter the flow pattern in the forebay of the pumping station, various rectification measures were chosen. Internal rectification flow patterns in the forebay under multiple plans, uniformity of flow velocity distribution in the measuring section, and vortex area reduction rates are investigated and compared. Based on the analysis and comparison of numerical simulation results, when the parabolic wall and some rectification piers are set significantly it improves the flow pattern of the forebay of the lateral inlet pumping station. It also makes the flow pattern of the inlet pool better and increases the uniformity of the flow velocity distribution by 8%. Further, it reduced the vortex area by 70%, effectively improving the operating efficiency of the pump. The research results of this paper provide a technical reference for the improvement of the flow pattern in the forebay of the lateral inlet pumping station.


2011 ◽  
Vol 130-134 ◽  
pp. 2485-2488
Author(s):  
Yuan Bo ◽  
Wei Min Feng ◽  
Mei Qing Liu ◽  
Qiu Wei Li

Compared RNG and Realizable model with experiment results in numerical simulation in inlet passage,conclusion Realizable k-e model is better reasonable in simulation can be pertained. In order to obtain ideal flow pattern ,Realizable k-e model could be using to simulate the passage and analyze flow pattern. Based on the simulation passage configuration can be modified to pursue ideal flow pattern, which can result in ideal inlet of pump and improve pump operating condition, vibration and noise in pumping station. Inlet passage flow pattern can be modified by using triangle piers,comparing different configuration can obtain the ideal results.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiren Zhou ◽  
Miaomiao Zhao ◽  
Chuan Wang ◽  
Zhenjun Gao

A model of the pumping station lateral inflow forebay was established to explore the influence of different lateral bending angles of the pumping station lateral inflow. The lateral bending angles were set at 45° and 60°, and the two schemes were calculated separately. Analyzing the results of the numerical simulation showed that the flow patterns of the diversion passages of different schemes were good, but the advancing mainstream of the 1# inlet passage near the sidewall was seriously deviated after entering the forebay. Most of the water can flow smoothly into the inlet passage, while a small part of the water flowed into the sidewall and formed a backflow, resulting in a large-scale backflow zone near the left sidewall of the forebay. Moreover, the flow in the backflow zone was turbulent, which affected the water inlet conditions of the 1# water flow passage. Comparing the water inlet conditions of the water passage with the numerical simulation results of 45° and 60° bending angles showed that the larger the lateral bending angle of the forebay was, the worse the flow pattern of the water flow, and the more unfavorable the pump operation.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6548
Author(s):  
Peng Liao ◽  
Jiyang Fu ◽  
Wenyong Ma ◽  
Yuan Cai ◽  
Yuncheng He

According to the engineering phenomenon of the galloping of ice-coated transmission lines at certain wind speeds, this paper proposes a novel type of energy harvester based on the galloping of a flexible structure. It uses the tension generated by the galloping structure to cause periodic strain on the piezoelectric cantilever beam, which is highly efficient for converting wind energy into electricity. On this basis, a physical model of fluid–structure interaction is established, and the Reynolds-averaged Navier–Stokes equation and SST K -ω turbulent model based on ANSYS Fluent are used to carry out a two-dimensional steady computational fluid dynamics (CFD) numerical simulation. First, the CFD technology under different grid densities and time steps is verified. CFD numerical simulation technology is used to simulate the physical model of the energy harvester, and the effect of wind speed on the lateral displacement and aerodynamic force of the flexible structure is analyzed. In addition, this paper also carries out a parameterized study on the influence of the harvester’s behavior, through the wind tunnel test, focusing on the voltage and electric power output efficiency. The harvester has a maximum output power of 119.7 μW/mm3 at the optimal resistance value of 200 KΩ at a wind speed of 10 m/s. The research results provide certain guidance for the design of a high-efficiency harvester with a square aerodynamic shape and a flexible bluff body.


Energy ◽  
2018 ◽  
Vol 165 ◽  
pp. 768-781 ◽  
Author(s):  
Rongshan Bi ◽  
Chen Chen ◽  
Jiansong Li ◽  
Xinshun Tan ◽  
Shuguang Xiang

Sign in / Sign up

Export Citation Format

Share Document