Influence of buffer layer and processing on the dark current of 2.5 µm-wavelength 2%-mismatched InGaAs photodetectors

1997 ◽  
Vol 144 (5) ◽  
pp. 277-282 ◽  
Author(s):  
M. D'Hondt ◽  
P. Demeester ◽  
I. Moerman ◽  
P. Van Daele
Keyword(s):  
2012 ◽  
Vol 21 (01) ◽  
pp. 1250014 ◽  
Author(s):  
L. S. CHUAH ◽  
S. M. THAHAB ◽  
Z. HASSAN

Nitrogen plasma-assisted molecular beam epitaxy (PAMBE) deposited GaN thin films on (111) n-type silicon substrate with different thickness AlN buffer layers are investigated and distinguished by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman scattering. The thickness of AlN buffer layer ranged from 200 nm to 300 nm. Besides that, the electrical characteristics of the GaN thin film for ultraviolet detecting utilizations are studied by calculating the photo current/dark current ratio on a metal-semiconductor-metal (MSM) photodiode with and without the illumination of Hg-lamp source. The devices have been tested over room temperature (RT). The photocurrent analysis, together with the study of Schottky barrier height (SBH) development, ascertain that the principal mechanism of photo transport is thermionic emission. The photocurrent value is rigorously dependent on Schottky barrier height. The GaN/AlN(200 nm)/n-Si MSM photodiode produces the highest photo/dark current ratio for the lowest strain that consists of the GaN film grown on the AlN (200 nm) buffer layer.


2017 ◽  
Vol 38 (4) ◽  
pp. 042001
Author(s):  
Xiaohui Yi ◽  
Zhiwei Huang ◽  
Guangyang Lin ◽  
Cheng Li ◽  
Songyan Chen ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Sheng-Po Chang

We report the fabrication of GaN Schottky photodiodes (PDs) on Si(111) substrates coated with an AlN/AlGaN buffer multilayer. It was found that their dark current was much smaller than that of identical devices prepared on sapphire substrates. With an incident wavelength of 359 nm, the maximum responsivity of the n−-GaN Schottky photodetectors with TiW contact electrodes was 0.1544 A/W, corresponding to a quantum efficiency of 53.4%. For a given bandwidth of 1 kHz and bias of 5 V, the resultant noise equivalent power (NEP) of n−-GaN Schottky photodetectors with TiW electrodes was1.033×10-12 W, corresponding to a detectivity (D*) of1.079×1012 cm-Hz0.5 W−1.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


2003 ◽  
Vol 762 ◽  
Author(s):  
Jianhua Zhu ◽  
Vikram L. Dalal

AbstractWe report on the growth and properties of microcrystalline Si:H and (Si,Ge):H solar cells on stainless steel substrates. The solar cells were grown using a remote, low pressure ECR plasma system. In order to crystallize (Si,Ge), much higher hydrogen dilution (∼40:1) had to be used compared to the case for mc-Si:H, where a dilution of 10:1 was adequate for crystallization. The solar cell structure was of the p+nn+ type, with light entering the p+ layer. It was found that it was advantageous to use a thin a-Si:H buffer layer at the back of the cells in order to reduce shunt density and improve the performance of the cells. A graded gap buffer layer was used at the p+n interface so as to improve the open-circuit voltage and fill factor. The open circuit voltage and fill factor decreased as the Ge content increased. Quantum efficiency measurements indicated that the device was indeed microcrystalline and followed the absorption characteristics of crystalline ( Si,Ge). As the Ge content increased, quantum efficiency in the infrared increased. X-ray measurements of films indicated grain sizes of ∼ 10nm. EDAX measurements were used to measure the Ge content in the films and devices. Capacitance measurements at low frequencies ( ~100 Hz and 1 kHz) indicated that the base layer was indeed behaving as a crystalline material, with classical C(V) curves. The defect density varied between 1x1016 to 2x1017/cm3, with higher defects indicated as the Ge concentration increased.


Sign in / Sign up

Export Citation Format

Share Document