scholarly journals Designetz: a modular concept for the energy transition – from isolated solutions to an efficient energy system of the future

2017 ◽  
Vol 2017 (1) ◽  
pp. 2670-2673
Author(s):  
Eva Wagner ◽  
Andreas Breuer ◽  
Oliver Helge Franz
2021 ◽  
Vol 9 ◽  
Author(s):  
Jonathan L. Male ◽  
Michael C. W. Kintner-Meyer ◽  
Robert S. Weber

Jet fuel is relatively small in terms of energy consumption and carbon dioxide emissions (10% of U.S. transportation sector in 2021, expected to increase to 14% by 2050). Still airlines have ambitious goals to reduce their greenhouse footprints from carbon-neutral growth beginning this year to reducing greenhouse gas emission for international flights by 50% by 2050 compared to 2005 levels. The challenge is heightened by the longevity of the current fleet (30–50 years) and by the difficulty in electrifying the future fleet because only 5% of the commercial aviation greenhouse gas footprint is from regional flights that might, conceivably be electrified using foreseeable technology. Therefore, large amounts of sustainable aviation fuel will be needed to reach the aggressive targets set by airlines. Only 3 million gallons (11.4 ML) of sustainable aviation fuel (SAF) (with a heat of combustion totaling about 400 TJ = 0.0004 EJ) was produced in the U.S. in 2019 for a 26 billion gallon per year market (3.6 EJ/year). Fischer-Tropsch and ethanol oligomerization (alcohol-to-jet) are considered for producing SAF, including the use of renewable electricity and carbon dioxide. In sequencing the energy transition, cleaning the U.S. grid is an important first step to have the largest greenhouse gas emissions reduction. While carbon dioxide and clean electricity can potentially provide the SAF in the future, an ethanol oligomerization option will require less energy.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3642 ◽  
Author(s):  
Karishma Asarpota ◽  
Vincent Nadin

The UN Paris Agreement of November 2016 recognises the need for a ‘cleaner and more efficient energy system’ as a core policy goal to address climate change. The spatial and urban form of cities is a key factor in achieving more efficient energy production and consumption and becomes more important with rapid urbanisation across much of the world. City urban form and planning are therefore potentially powerful levers for the energy transition. This paper examines the extent to which city ‘energy strategies’ address the critical spatial and urban form characteristics of cities as a means to achieve a more efficient energy system. We construct an assessment framework of key aspects of the spatial and urban development of cities related to transport and accessibility and urban form. The framework is used to assess the degree to which energy strategies take into consideration aspects of urban development in four cities that are taking significant action on the energy policy: Hong Kong Oakland, Oslo, and Vancouver. We conclude that in these cities there is only fragmentary consideration of the potential of shaping spatial and urban form in the interests of energy efficiency.


2021 ◽  
Vol 13 (5) ◽  
pp. 2819
Author(s):  
Han Phoumin ◽  
Fukunari Kimura ◽  
Jun Arima

The Association of Southeast Asian Nations (ASEAN) faces tremendous challenges regarding the future energy landscape and how the energy transition will embrace a new architecture—including sound policies and technologies to ensure energy access together with affordability, energy security, and energy sustainability. Given the high share of fossil fuels in ASEAN’s current energy mix (oil, coal, and natural gas comprise almost 80%), the clean use of fossil fuels through the deployment of clean technologies is indispensable for decarbonizing ASEAN’s emissions. The future energy landscape of ASEAN will rely on today’s actions, policies, and investments to change the fossil fuel-based energy system towards a cleaner energy system, but any decisions and energy policy measures to be rolled out during the energy transition need to be weighed against potentially higher energy costs, affordability issues, and energy security risks. This paper employs energy modelling scenarios to seek plausible policy options for ASEAN to achieve more emissions reductions as well as energy savings, and to assess the extent to which the composition of the energy mix will be changed under various energy policy scenarios. The results imply policy recommendations for accelerating the share of renewables, adopting clean technologies and the clean use of fossil fuels, and investing in climate-resilient energy quality infrastructure.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4027
Author(s):  
Xavier Rixhon ◽  
Gauthier Limpens ◽  
Diederik Coppitters ◽  
Hervé Jeanmart ◽  
Francesco Contino

Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials, one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels, such as hydrogen, methane, and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion, economical storage solution for high capacity, and ability to couple sectors (i.e., electricity to transport, to heat, or to industry). However, the level of contribution of electric-energy carriers is unknown. To assess their role in the future, we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g., price of natural gas, efficiency of heat pump) to represent as closely as possible the future energy system. However, these parameters can be highly uncertain, especially for long-term planning. Consequently, this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that, compared to the deterministic cost-optimum situation, the system cost, accounting for uncertainties, becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties, their higher price, and uncertainty.


Author(s):  
Íñigo del Guayo ◽  
Lee Godden ◽  
Donald N. Zillman ◽  
Milton F. Montoya ◽  
José Juan González

The individual chapters in this book have addressed how law can advance energy justice in all its multi-faceted aspects. In turn, this chapter provides summary conclusions drawn from the legal analyses contained in those chapters, emphasising how law is essential to achieving global and national goals for energy justice. In doing so, it provides particular emphasis on the fight against energy poverty, while examining the potential for a variety of existing legal measures to provide solutions to pressing energy justice issues for developing and developed nations. The analysis also highlights the lessons that can be learned for the future energy transition from the case studies of the barriers to energy justice that exist in many jurisdictions examined in this collection. In its survey of how Law can assist in facilitating developments, such as decarbonization, that are needed to transit to a new energy system, it has squarely kept a focus on enabling the transition to take place in the fairest possible way.


2021 ◽  
Vol 13 (11) ◽  
pp. 5861
Author(s):  
Marianne Pedinotti-Castelle ◽  
Pierre-Olivier Pineau ◽  
Kathleen Vaillancourt ◽  
Ben Amor

Transportation is a key factor in the fight against climate change. Consumer behavior changes in transportation are underrepresented in energy policies, even if they could be essential to achieve the fixed GHG emission reduction targets. To help quantify the role of behaviors in energy transition and their implications on the dynamics of an energy system, this study is conducted using the North American TIMES Energy Model, adapted to Quebec (Canada). A behavioral disruption scenario (an increase in carpooling) is introduced in the model’s transportation sector and is compared to a massive electrification scenario. Our results highlight the fact that a behavioral disruption can lead to the same GHG emission reductions (65%) by 2050 as an electrification policy, while alleviating different efforts (such as additional electrical capacity and additional costs) associated with massive electrification. Moreover, the results are sensitive to behavior-related parameters, such as social discount rates and car lifetimes.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2728
Author(s):  
Chun-Nan Chen ◽  
Chun-Ting Yang

The Taiwanese government has set an energy transition roadmap of 20% renewable energy supply by 2025, including a 20 GW installed PV capacity target, composed of 8 GW rooftop and 12 GW ground-mounted systems. The main trend of feed-in tariffs is downwards, having fallen by 50% over a ten-year period. Predicting the future ten-year equity internal rate of return (IRR) in this study, we examine the investability of PV systems in Taiwan when subsidies and investment costs descend. We have found that the projected subsidies scheme favours investment in small-sized PV systems. Unless the investment costs of medium-sized PV systems fall or subsidies rise over the next decade, investing in medium-sized PV systems will be less attractive. Nonlinear and linear degradation causes slight IRR differences when using higher-reliability modules.


2021 ◽  
pp. 1-25
Author(s):  
Anne Kallies

Abstract The law and regulation of the energy sector in Australia is subject to overlapping responsibilities of both federal and state governments. Crucially for energy transition efforts, neither energy, environment nor climate is mentioned in the Australian Constitution. Australia has a tradition of creative cooperative federalism solutions for responding to problems of national importance. In the energy sector this has resulted in an intricate national framework for energy markets, which relies on mirror legislation passed by participating states, with oversight by state and federal executive governments. Independently of these frameworks, both federal and state governments have passed climate change legislation, which crucially includes renewable energy support mechanisms. At a time when a rapid transition to a decarbonized energy system is essential, legal frameworks struggle to respond in a timely fashion. The political discourse around energy has become increasingly toxic – reflecting a dysfunctional state–federal relationship in energy and climate law. Australia needs to consider whether its cooperative federalism solutions are sufficient to support the energy transition and how climate law at the state and federal levels interacts with energy market legal frameworks.


Sign in / Sign up

Export Citation Format

Share Document