Prospective current mode approach for on-chip interconnects in integrated circuit designs

Author(s):  
K. N. Hooghan ◽  
K. S. Wills ◽  
P.A. Rodriguez ◽  
S.J. O’Connell

Abstract Device repair using Focused Ion Beam(FIB) systems has been in use for most of the last decade. Most of this has been done by people who have been essentially self-taught. The result has been a long learning curve to become proficient in device repair. Since a great deal of the problem is that documentation on this “art form” is found in papers from many different disciplines, this work attempts to summarize all of the available information under one title. The primary focus of FIB device repair is to ensure and maintain device integrity and subsequently retain market share while optimizing the use of the instrument, usually referred to as ‘beam time’. We describe and discuss several methods of optimizing beam time. First, beam time should be minimized while doing on chip navigation to reach the target areas. Several different approaches are discussed: dead reckoning, 3-point alignment, CAD-based navigation, and optical overlay. Second, after the repair areas are located and identified, the desired metal levels must be reached using a combination of beam currents and gas chemistries, and then filled up and strapped to make final connections. Third, cuts and cleanups must be performed as required for the final repair. We will discuss typical values of the beam currents required to maintain device integrity while concurrently optimizing repair time. Maintaining device integrity is difficult because of two potentially serious interactions of the FIB on the substrate: 1) since the beam consists of heavy metal ions (typically Gallium) the act of imaging the surface produces some physical damage; 2) the beam is positively charged and puts some charge into the substrate, making it necessary to use great care working in and around capacitors or active areas such as transistors, in order to avoid changing the threshold voltage of the devices. Strategies for minimizing potential damage and maximizing quality and throughput will be discussed.


1994 ◽  
Vol 6 (8) ◽  
pp. 960-962 ◽  
Author(s):  
J.-M. Verdiell ◽  
T.L. Koch ◽  
B.I. Miller ◽  
M.E. Young ◽  
U. Koren ◽  
...  

2013 ◽  
Vol 22 (09) ◽  
pp. 1340001 ◽  
Author(s):  
JIUN-WEI HORNG ◽  
TO-YAO CHIU ◽  
CHING-PAO HSIAO ◽  
GUANG-TING HUANG

A current-mode universal biquadratic filter with three input terminals and one output terminal is presented. The architecture uses two current conveyors (CCs), two grounded capacitors and two grounded resistors; and can realize all standard second-order filter functions — highpass, bandpass, lowpass, notch and allpass. Moreover, the circuit still offers the following advantage features: very low active and passive sensitivities, using of grounded capacitors and resistors which is ideal for integrated circuit implementation, without requirements for critical component matching conditions and very high output impedance. The workability of the proposed circuit has been verified via HSPICE simulations using TSMC 0.18 μm, level 49 MOSFET technology.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 599
Author(s):  
Jerry R. Meyer ◽  
Chul Soo Kim ◽  
Mijin Kim ◽  
Chadwick L. Canedy ◽  
Charles D. Merritt ◽  
...  

We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.


2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4812 ◽  
Author(s):  
Pavol Galajda ◽  
Martin Pecovsky ◽  
Miroslav Sokol ◽  
Martin Kmec ◽  
Dusan Kocur

Short-range ultra-wideband (UWB) radar sensors belong to very promising sensing techniques that have received vast attention recently. The M-sequence UWB sensing techniques for radio detection and ranging feature several advantages over the other short-range radars, inter alia superior integration capabilities. The prerequisite to investigate their capabilities in real scenarios is the existence of physically available hardware, i.e., particular functional system blocks. In this paper, we present three novel blocks of M-sequence UWB radars exploiting application-specific integrated circuit (ASIC) technology. These are the integrated 15th-order M-sequence radar transceiver on one chip, experimental active Electronic Communication Committee (ECC) bandpass filter, and miniature transmitting UWB antenna with an integrated amplifier. All these are custom designs intended for the enhancement of capabilities of an M-sequence-based system family for new UWB short-range sensing applications. The design approaches and verification of the manufactured prototypes by measurements of the realized circuits are presented in this paper. The fine balance on technology capabilities (Fc of roughly 120 GHz) and thoughtful design process of the proposed blocks is the first step toward remarkably minimized devices, e.g., as System on Chip designs, which apparently allow broadening the range of new applications.


Sign in / Sign up

Export Citation Format

Share Document