scholarly journals The impact of Lyman-α radiative transfer on large-scale clustering in the Illustris simulation

2018 ◽  
Vol 614 ◽  
pp. A31 ◽  
Author(s):  
C. Behrens ◽  
C. Byrohl ◽  
S. Saito ◽  
J. C. Niemeyer

Context. Lyman-α emitters (LAEs) are a promising probe of the large-scale structure at high redshift, z ≳ 2. In particular, the Hobby-Eberly Telescope Dark Energy Experiment aims at observing LAEs at 1.9 < z < 3.5 to measure the baryon acoustic oscillation (BAO) scale and the redshift-space distortion (RSD). However, it has been pointed out that the complicated radiative transfer (RT) of the resonant Lyman-α emission line generates an anisotropic selection bias in the LAE clustering on large scales, s ≳ 10 Mpc. This effect could potentially induce a systematic error in the BAO and RSD measurements. Also, there exists a recent claim to have observational evidence of the effect in the Lyman-α intensity map, albeit statistically insignificant. Aims. We aim at quantifying the impact of the Lyman-α RT on the large-scale galaxy clustering in detail. For this purpose, we study the correlations between the large-scale environment and the ratio of an apparent Lyman-α luminosity to an intrinsic one, which we call the “observed fraction”, at 2 < z < 6. Methods. We apply our Lyman-α RT code by post-processing the full Illustris simulations. We simply assume that the intrinsic luminosity of the Lyman-α emission is proportional to the star formation rate of galaxies in Illustris, yielding a sufficiently large sample of LAEs to measure the anisotropic selection bias. Results. We find little correlation between large-scale environment and the observed fraction induced by the RT, and hence a smaller anisotropic selection bias than has previously been claimed. We argue that the anisotropy was overestimated in previous work due to insufficient spatial resolution; it is important to keep the resolution such that it resolves the high-density region down to the scale of the interstellar medium, that is, ~1 physical kpc. We also find that the correlation can be further enhanced by assumptions in modeling intrinsic Lyman-α emission.

Author(s):  
Siddhartha Gurung-López ◽  
Álvaro A Orsi ◽  
Silvia Bonoli ◽  
Nelson Padilla ◽  
Cedric G Lacey ◽  
...  

Abstract In the near future galaxy surveys will target Lyman alpha emitting galaxies (LAEs) to unveil the nature of dark energy. It has been suggested that the observability of LAEs is coupled to the large scale properties of the intergalactic medium. Such coupling could introduce distortions into the observed clustering of LAEs, adding a new potential difficulty to the interpretation of upcoming surveys. We present a model of LAEs that incorporates $\rm {Ly}\alpha$ radiative transfer processes in the interstellar and intergalactic medium. The model is implemented in the GALFORM semi-analytic model of galaxy of formation and evolution. We find that the radiative transfer inside galaxies produces selection effects over galaxy properties. In particular, observed LAEs tend to have low metallicities and intermediate star formation rates. At low redshift we find no evidence of a correlation between the spatial distribution of LAEs and the intergalactic medium properties. However, at high redshift the LAEs are linked to the line of sight velocity and density gradient of the intergalactic medium. The strength of the coupling depends on the outflow properties of the galaxies and redshift. This effect modifies the clustering of LAEs on large scales, adding non linear features. In particular, our model predicts modifications to the shape and position of the baryon acoustic oscillation peak. This work highlights the importance of including radiative transfer physics in the cosmological analysis of LAEs.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


2019 ◽  
Vol 490 (2) ◽  
pp. 2855-2879 ◽  
Author(s):  
L Y Aaron Yung ◽  
Rachel S Somerville ◽  
Gergö Popping ◽  
Steven L Finkelstein ◽  
Harry C Ferguson ◽  
...  

ABSTRACT The long anticipated James Webb Space Telescope (JWST) will be able to directly detect large samples of galaxies at very high redshift. Using the well-established, computationally efficient Santa Cruz semi-analytic model, with recently implemented multiphase gas partitioning, and H2-based star formation recipes, we make predictions for a wide variety of galaxy properties for galaxy populations at z = 4–10. In this work, we provide forecasts for the physical properties of high-redshift galaxies and links to their photometric properties. With physical parameters calibrated only to z ∼ 0 observations, our model predictions are in good agreement with current observational constraints on stellar mass and star formation rate distribution functions up to z ∼ 8. We also provide predictions representing wide, deep, and lensed JWST survey configurations. We study the redshift evolution of key galaxy properties and the scaling relations among them. Taking advantage of our models’ high computational efficiency, we study the impact of systematically varying the model parameters. All distribution functions and scaling relations presented in this work are available at https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/.


2004 ◽  
Vol 217 ◽  
pp. 114-115
Author(s):  
L. Montier ◽  
M. Giard

Recent observations at low and high redshift seem to confirm the presence of dust at very low abundances in the InterGalactic Medium (IGM) and especially in the IntraCluster Medium (ICM). We have studied the impact of this dust on the IGM, in terms of heating and cooling. on one hand, with an analytical model of dust emission, we have proved that the dust can be considered as the dominant cooling agent of the ICM at large scale, when the temperature is greater than T = 107 K. on the other hand, with a strong UV Background and a low temperature (Te ≤ 105 K), dust grains become an efficient heating agent of the IGM. These two opposite effects may have played an important role regarding structure formation of the Universe at large and small scales.


2020 ◽  
Vol 497 (4) ◽  
pp. 5292-5308 ◽  
Author(s):  
Paul Torrey ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
Daniel Anglés-Alcázar ◽  
Eliot Quataert ◽  
...  

ABSTRACT Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disc galaxies. Stellar feedback is modelled using the Feedback In Realistic Environments (fire) physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low- and moderate-luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳20–30 Myr, the inner ∼1–10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor of ∼2–3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker discs and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


2020 ◽  
Vol 498 (4) ◽  
pp. 4839-4852 ◽  
Author(s):  
Maik Druschke ◽  
Anna T P Schauer ◽  
Simon C O Glover ◽  
Ralf S Klessen

ABSTRACT Models of the decoupling of baryons and photons during the recombination epoch predict the existence of a large-scale velocity offset between baryons and dark matter at later times, the so-called streaming velocity. In this paper, we use high resolution numerical simulations to investigate the impact of this streaming velocity on the spin and shape distributions of high-redshift minihaloes, the formation sites of the earliest generation of stars. We find that the presence of a streaming velocity has a negligible effect on the spin and shape of the dark matter component of the minihaloes. However, it strongly affects the behaviour of the gas component. The most probable spin parameter increases from ∼0.03 in the absence of streaming to ∼0.15 for a run with a streaming velocity of three times σrms, corresponding to 1.4 km s−1 at redshift z = 15. The gas within the minihaloes becomes increasingly less spherical and more oblate as the streaming velocity increases, with dense clumps being found at larger distances from the halo centre. The impact of the streaming velocity is also mass-dependent: less massive objects are influenced more strongly, on account of their shallower potential wells. The number of haloes in which gas cooling and runaway gravitational collapse occurs decreases substantially as the streaming velocity increases. However, the spin and shape distributions of gas that does manage to cool and collapse are insensitive to the value of the streaming velocity and we therefore do not expect the properties of the stars that formed from this collapsed gas to depend on the value of the streaming velocity. The spin and shape of this central gas clump are uncorrelated with the same properties measured on the scale of the halo as a whole.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 232-232
Author(s):  
Evan Scannapieco ◽  
Sharanya Sur ◽  
Eve C. Ostriker

AbstractHigh surface density, rapidly star-forming galaxies are observed to have ≈ 50 - 100 km s−1 line-of-sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae.We find that such motions lead to strong global outflows in the highly-compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds -35 km s−1, as occurs in the dense disks that have star formation rate densities above ≈ 0.1 M⊙ yr−1 kpc−2. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the star-formation rate density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from stellar explosions.These results are explained in more detailed in Sur, Scannapieco, & Ostriker (2015).


Sign in / Sign up

Export Citation Format

Share Document