scholarly journals Two-fluid simulations of waves in the solar chromosphere

2019 ◽  
Vol 627 ◽  
pp. A25 ◽  
Author(s):  
B. Popescu Braileanu ◽  
V. S. Lukin ◽  
E. Khomenko ◽  
Á. de Vicente

Solar chromosphere consists of a partially ionized plasma, which makes modeling the solar chromosphere a particularly challenging numerical task. Here we numerically model chromospheric waves using a two-fluid approach with a newly developed numerical code. The code solves two-fluid equations of conservation of mass, momentum, and energy, together with the induction equation for the case of the purely hydrogen plasma with collisional coupling between the charged and neutral fluid components. The implementation of a semi-implicit algorithm allows us to overcome the numerical stability constraints due to the stiff collisional terms. We test the code against analytical solutions of acoustic and Alfvén wave propagation in uniform medium in several regimes of collisional coupling. The results of our simulations are consistent with the analytical estimates, and with other results described in the literature. In the limit of a large collisional frequency, the waves propagate with a common speed of a single fluid. In the other limit of a vanishingly small collisional frequency, the Alfvén waves propagate with an Alfvén speed of the charged fluid only, while the perturbation in neutral fluid is very small. The acoustic waves in these limits propagate with the sound speed corresponding to either the charges or the neutrals, while the perturbation in the other fluid component is negligible. Otherwise, when the collision frequency is similar to the real part of the wave frequency, the interaction between charges and neutrals through momentum-transfer collisions cause alterations of the waves frequencies and damping of the wave amplitudes.

1977 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
N. F. Cramer

The parametric excitation of slow, intermediate (Alfvén) and fast magneto-acoustic waves by a modulated spatially non-uniform magnetic field in a plasma with a finite ratio of gas pressure to magnetic pressure is considered. The waves are excited in pairs, either pairs of the same mode, or a pair of different modes. The growth rates of the instabilities are calculated and compared with the known result for the Alfvén wave in a zero gas pressure plasma. The only waves that are found not to be excited are the slow plus fast wave pair, and the intermediate plus slow or fast wave pair (unless the waves have a component of propagation direction perpendicular to both the background magnetic field and the direction of non-uniformity of the field).


Author(s):  
Mats Carlsson ◽  
Thomas J Bogdan

Acoustic waves are generated by the convective motions in the solar convection zone. When propagating upwards into the chromosphere they reach the height where the sound speed equals the Alfvén speed and they undergo mode conversion, refraction and reflection. We use numerical simulations to study these processes in realistic configurations where the wavelength of the waves is similar to the length scales of the magnetic field. Even though this regime is outside the validity of previous analytic studies or studies using ray-tracing theory, we show that some of their basic results remain valid: the critical quantity for mode conversion is the angle between the magnetic field and the k-vector: the attack angle. At angles smaller than 30° much of the acoustic, fast mode from the photosphere is transmitted as an acoustic, slow mode propagating along the field lines. At larger angles, most of the energy is refracted/reflected and returns as a fast mode creating an interference pattern between the upward and downward propagating waves. In three-dimensions, this interference between waves at small angles creates patterns with large horizontal phase speeds, especially close to magnetic field concentrations. When damping from shock dissipation and radiation is taken into account, the waves in the low–mid chromosphere have mostly the character of upward propagating acoustic waves and it is only close to the reflecting layer we get similar amplitudes for the upward propagating and refracted/reflected waves. The oscillatory power is suppressed in magnetic field concentrations and enhanced in ring-formed patterns around them. The complex interference patterns caused by mode-conversion, refraction and reflection, even with simple incident waves and in simple magnetic field geometries, make direct inversion of observables exceedingly difficult. In a dynamic chromosphere it is doubtful if the determination of mean quantities is even meaningful.


2021 ◽  
Vol 922 (2) ◽  
pp. 225
Author(s):  
Julia M. Riedl ◽  
Tom Van Doorsselaere ◽  
Fabio Reale ◽  
Marcel Goossens ◽  
Antonino Petralia ◽  
...  

Abstract Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 s. For this period, acoustic cutoff regions are present below the transition region (TR). About 2% of the initial energy from the driver reaches the corona. The shape of the cutoff regions and the height of the TR show a highly dynamic behavior. Taking only the driven waves into account, the waves have a propagating nature below and above the cutoff region, but are standing and evanescent within the cutoff region. Studying the driven waves together with the background motions in the model reveals standing waves between the cutoff region and the TR. These standing waves cause an oscillation of the TR height. In addition, fast or leaky sausage body-like waves might have been excited close to the base of the loop. These waves then possibly convert to fast or leaky sausage surface-like waves at the top of the main cutoff region, followed by a conversion to slow sausage body-like waves around the TR.


1974 ◽  
Vol 12 (3) ◽  
pp. 445-453 ◽  
Author(s):  
Nguyen The Hung

The nonlinear interaction between two Alfvén waves and a sound wave is studied, using the normal-mode approach. This leads, in a simple way to a set of coupled equations, and consequently to a dispersion relation for the waves under consideration. It is shown that a large-amplitude Alfvén wave can give rise to two distinct types of parametric instabilities, namely the oscillating and the purely growing waves. In each case, the expressions for the threshold pump intensity, the frequency shift and the growth rate of the excited waves are obtained. In particular, the results for a propagating pump under perfect frequency matching conditions are compared with those of Sagdeev & Galeev.


Author(s):  
Shi Yan ◽  
Binbin He ◽  
Naizhi Zhao

Pipeline structure may generate damages during its service life due to the influence of environment or accidental loading. The damages need to be detected and repaired if they are severe enough to influence the transportation work. Non-destructive detection using smart materials combined with suitable diagonal algorithms are widely used in the field of structural health monitoring (SHM). Piezoelectric ceramics (such as Lead Zirconate Titanate, PZT) is one of the smart materials to be applied in the SHM due to the piezoelectric effect. So far, the PZT-based wave method is widely used for damage detection of structures, in particular, pipeline structures. A series of piezoelectric patches are bonded on the surface of the pipeline structure to monitor the damages such as local crack or effective area reduction due to corrosion by using diagonal waves. The damage of the pipeline structure can be detected by analysis of the received diagonal waves which peak value, phase, and arriving time can be deferent from the health ones. The response of the diagonal wave is not only correlated to the damage location through estimation of the arrival time of the wave peak, but also associated with the peak value of the wave for the reduction of wave energy as the guided wave passing through the damages. Therefore, the presence of damages in the pipeline structure can be detected by investigating the parameter change of the guided waves. The change of the wave parameters represents the attenuation, deflection and mode conversion of the waves due to the damages. In addition, the guided wave has the ability of quick detecting the damage of the pipeline structure and the simplicity of generating and receiving detection waves by using PZT patches. To verify the proposed method, an experiment is designed and tested by using a steel pipe bonded the PZT patches on the surface of it. The PZT patches consist of an array to estimate the location and level of the damage which is simulated by an artificial notch on the surface of the structure. The several locations and deep heights of the notches are considered during the test. A pair of the PZT patches are used at the same time as one is used as an actuator and the other as a sensor, respectively. A tone burst of 5 cycles of wave shape is used during the experiment. A wave generator is applied to create the proposed waves, and the waves are amplified by an amplifier to actuate the PZT patch to emit the diagonal waves with appropriately enough energy. Meanwhile, the other PZT patch is used as a sensor to receive the diagonal signals which contain the information of the damages for processing. For data processing, an index of root mean square deviation (RMSD) of the received data is used to estimate the damage level by compare of the data between the damaged and the health peak valves of the received signals. The time reversal method which aimed at increasing the efficiency of the detection is also used to detect the damage location by estimating the arrival time of the reflected wave passing with a certain velocity. The proposed method experimentally validates that it is effective for application in damage detection of pipeline structure.


2009 ◽  
Vol 642 ◽  
pp. 235-277 ◽  
Author(s):  
M. NITSCHE ◽  
P. D. WEIDMAN ◽  
R. GRIMSHAW ◽  
M. GHRIST ◽  
B. FORNBERG

Over two decades ago, some numerical studies and laboratory experiments identified the phenomenon of leapfrogging internal solitary waves located on separated pycnoclines. We revisit this problem to explore the behaviour of the near resonance phenomenon. We have developed a numerical code to follow the long-time inviscid evolution of isolated mode-two disturbances on two separated pycnoclines in a three-layer stratified fluid bounded by rigid horizontal top and bottom walls. We study the dependence of the solution on input system parameters, namely the three fluid densities and the two interface thicknesses, for fixed initial conditions describing isolated mode-two disturbances on each pycnocline. For most parameter values, the initial disturbances separate immediately and evolve into solitary waves, each with a distinct speed. However, in a narrow region of parameter space, the waves pair up and oscillate for some time in leapfrog fashion with a nearly equal average speed. The motion is only quasi-periodic, as each wave loses energy into its respective dispersive tail, which causes the spatial oscillation magnitude and period to increase until the waves eventually separate. We record the separation time, oscillation period and magnitude, and the final amplitudes and celerity of the separated waves as a function of the input parameters, and give evidence that no perfect periodic solutions occur. A simple asymptotic model is developed to aid in interpretation of the numerical results.


Nature ◽  
2005 ◽  
Vol 435 (7044) ◽  
pp. 919-921 ◽  
Author(s):  
Astrid Fossum ◽  
Mats Carlsson

Babel ◽  
1994 ◽  
Vol 40 (1) ◽  
pp. 21-37
Author(s):  
Ivo R.V. Hoefkens

Marguerite Yourcenar, known as an author, is also the translator of about a dozen works. My purpose here is to trace the evolution of her oeuvre in the field of translation in relation to her literary output. I have divided the former into three distinct periods, the first of which covers the closing years of the 1930s, when Marguerite Yourcenar translated Virginia Woolf's The Waves and Henry James's What Maisie Knew. Her interest in these authors is to a large extent stylistic. On the other hand, the translation of Constantin Cavafy's poetry, which was begun during the same period, reflects the intimist themes to be found in Marguerite Yourcenar's early narratives {Alexis and the others), although she was then already seeking out other thematic sources. The translation was only published in 1958. It consequently falls within a second period: that of the "présentations critiques" (critical commentaries). These major efforts in translation {Présentation critique de Constantin Cavafy, La Couronne et la Lyre, Fleuve profonde, Sombre rivière) are marked by a manifest preoccupation with the aesthetic. But themes of a more universal character and engagement in the socio-political sphere also enter into the choice of the texts for translation (negro spirituals, Présentation critique d'Hortense Flexner). These translations were contemporaneous with the creation of Marguerite Yourcenar's most important novels, namely Mémoires d'Hadrien and L'OEuvre au Noir. The last of the three periods, the 1980s, finds her tackling far less ambitious projects, the function of which tends increasingly towards ethical communication. The only one of them that bears any resemblance to the "présentations critiques" is the essay on Yukio Mishima and the translation of Cinq Nô Modernes, assuming that these are to be considered as an ensemble. Here, as elsewhere, it also emerges that Marguerite Yourcenar is largely indifferent to the existence of other translations.


1940 ◽  
Vol 30 (2) ◽  
pp. 139-178
Author(s):  
J. Emilio Ramirez

Summary Over a period of six months, from July to December, 1938, an investigation on microseismic waves has been carried out in the Department of Geophysics of St. Louis University. Four electromagnetic seismographs, specially designed for recording microseisms, were installed in the city of St. Louis in the form of a triangular network. Two of these were E-W components, one at the St. Louis University Gymnasium and the other 6.4 km. due west at Washington University. The other two were arranged as N-S components, one at the St. Louis University Gymnasium and one 6.3 km. due south at Maryville College. The speed of the photographic paper was 60 mm/min., and time signals were recorded automatically and simultaneously on each paper from the same clock every minute and at shorter intervals from a special pendulum and “tickler” combination by means of telephone wires. The results have demonstrated beyond doubt that microseismic waves are traveling and not stationary waves. The same waves have been identified at each one of the stations of the network, and also at Florissant, 21.8 km. away from St. Louis University. The speed of microseismic waves at St. Louis was determined from several storms of microseisms and it was found to be 2.67±0.03 km/sec. The direction of microseisms was also established for most of the storms and it was found that about 80 per cent of incoming microseisms at St. Louis were from the northeast quadrant during the interval from July to December, 1938. No microseisms were recorded from the south, west, or southwest. The period of the waves varied between 3.5 and 7.5 sec. The average period was about 5.4 sec. The microseismic wave length was therefore of the order of 14¼ km. A study of the nature of microseismic waves from the three Galitzin-Wilip components of the Florissant station reveals in the waves many of the characteristics of the Rayleigh waves; that is, the particles in the passage of microseismic waves move in elliptical orbits of somewhat larger vertical axis and with retrograde motion. A comparison carried over a period of more than a year between microseisms and microbarometric oscillations recorded by specially designed microbarographs showed no direct relationship between the two phenomena in wave form, group form, period, or duration of storms. The source of microseisms is to be found not over the land, but rather out over the surface of the ocean. The amplitudes of microseisms depend only on the intensity and widespread character of barometric lows traveling over the ocean. Several correlations between the two phenomena seem to make this conclusion rather evident. Special emphasis is laid on the fact that all the determined directions of incoming microseisms at St. Louis point to a deep barometric low over the ocean. The period of microseisms seems to be a function of the distance between the station and the source of microseisms. The exact mechanism by which barometric lows over the ocean water result in the production of microseisms needs further investigation. Large microseisms have been produced without any indication of surf near the coasts, or with winds blowing from the land toward the ocean.


Sign in / Sign up

Export Citation Format

Share Document