scholarly journals A statistical analysis of dust polarization properties in ALMA observations of Class 0 protostellar cores

2020 ◽  
Vol 644 ◽  
pp. A11
Author(s):  
V. J. M. Le Gouellec ◽  
A. J. Maury ◽  
V. Guillet ◽  
C. L. H. Hull ◽  
J. M. Girart ◽  
...  

Context. Recent observational progress has challenged the dust grain-alignment theories used to explain the polarized dust emission routinely observed in star-forming cores. Aims. In an effort to improve our understanding of the dust grain alignment mechanism(s), we have gathered a dozen ALMA maps of (sub)millimeter-wavelength polarized dust emission from Class 0 protostars and carried out a comprehensive statistical analysis of dust polarization quantities. Methods. We analyze the statistical properties of the polarization fraction Pfrac and the dispersion of polarization position angles S. More specifically, we investigate the relationship between S and Pfrac as well as the evolution of the product S × Pfrac as a function of the column density of the gas in the protostellar envelopes. We compare the observed trends with those found in polarization observations of dust in the interstellar medium and in synthetic observations of non-ideal magneto-hydrodynamic (MHD) simulations of protostellar cores. Results. We find a significant S ∝ Pfrac−0.79 correlation in the polarized dust emission from protostellar envelopes seen with ALMA; the power-law index significantly differs from the one observed by Planck in star-forming clouds. The product S × Pfrac, which is sensitive to the dust grain alignment efficiency, is approximately constant across three orders of magnitude in envelope column density (from NH2 = 1022 cm−2 to NH2 = 1025 cm−2), with a mean value of 0.36−0.17+0.10. This suggests that the grain alignment mechanism producing the bulk of the polarized dust emission in star-forming cores may not systematically depend on the local conditions such as the local gas density. However, in the lowest-luminosity sources in our sample, we find a hint of less efficient dust grain alignment with increasing column density. Our observations and their comparison with synthetic observations of MHD models suggest that the total intensity versus the polarized dust are distributed at different intrinsic spatial scales, which can affect the statistics from the ALMA observations, for example, by producing artificially high Pfrac. Finally, synthetic observations of MHD models implementing radiative alignment torques (RATs) show that the statistical estimator S × Pfrac is sensitive to the strength of the radiation field in the core. Moreover, we find that the simulations with a uniform perfect alignment (PA) of dust grains yield, on average, much higher S × Pfrac values than those implementing RATs; the ALMA values lie among those predicted by PA, and they are significantly higher than the ones obtained with RATs, especially at large column densities. Conclusions. Ultimately, our results suggest that dust alignment mechanism(s) are efficient at producing dust polarized emission in the various local conditions typical of Class 0 protostars. The grain alignment efficiency found in these objects seems to be higher than the efficiency produced by the standard RAT alignment of paramagnetic grains. Further studies will be needed to understand how more efficient grain alignment via, for example, different irradiation conditions, dust grain characteristics, or additional grain alignment mechanisms can reproduce the observations.

2018 ◽  
Vol 620 ◽  
pp. A26 ◽  
Author(s):  
Mika Juvela ◽  
Vincent Guillet ◽  
Tie Liu ◽  
Isabelle Ristorcelli ◽  
Veli-Matti Pelkonen ◽  
...  

Context. The sub-millimetre polarisation of dust emission from star-forming clouds carries information on grain properties and on the effects that magnetic fields have on cloud evolution. Aims. Using observations of a dense filamentary cloud G035.39-00.33, we aim to characterise the dust emission properties and the variations of the polarisation fraction. Methods. JCMT SCUBA-2/POL-2 observations at 850 μm were combined with Planck 850 μm(353 GHz) data to map polarisation fraction at small and large scales. With previous total intensity SCUBA-2 observations (450 and 850 μm) and Herschel data, the column densities were determined via modified black-body fits and via radiative transfer modelling. Models were constructed to examine how the observed polarisation angles and fractions depend on potential magnetic field geometries and grain alignment processes. Results. POL-2 data show clear changes in the magnetic field orientation. These are not in contradiction with the uniform orientation and almost constant polarisation fraction seen by Planck, because of the difference in the beam sizes and the POL-2 data being affected by spatial filtering. The filament has a peak column density of N(H2) ~ 7 × 1022 cm−2, a minimum dust temperature of T ~ 12 K, and a mass of ~4300 M⊙ for the area N(H2) > 5 × 1021 cm−2. The estimated average value of the dust opacity spectral index is β ~ 1.9. The ratio of sub-millimetre and J-band optical depths is τ (250 μm)∕τ (J) ~ 2.5 × 10−3, more than four times the typical values for diffuse medium. The polarisation fraction decreases as a function of column density to p ~ 1% in the central filament. Because of noise, the observed decrease of p(N) is significant only at N(H2) > 2 × 1022 cm−2. The observations suggest that the grain alignment is not constant. Although the data can be explained with a complete loss of alignment at densities above ~104 cm−3 or using the predictions of radiative torques alignment, the uncertainty of the field geometry and the spatial filtering of the SCUBA-2 data prevent strong conclusions. Conclusions. The G035.39-00.33 filament shows strong signs of dust evolution and the low polarisation fraction is suggestive of a loss of polarised emission from its densest parts.


2017 ◽  
Vol 608 ◽  
pp. A21 ◽  
Author(s):  
M. Saajasto ◽  
M. Juvela ◽  
K. Dobashi ◽  
T. Shimoikura ◽  
I. Ristorcelli ◽  
...  

Context. The combination of line and continuum observations can provide vital insight into the formation and fragmentation of filaments and the initial conditions for star formation. We have carried out line observations to map the kinematics of an evolved, actively star forming filament G82.65-2.00. The filament was first identified from the Planck data as a region of particularly cold dust emission and was mapped at 100–500 μm as a part of the Herschel key program Galactic Cold Cores. The Herschel observations cover the central part of the filament, corresponding to a filament length of ~ 12 pc at the assumed distance of 620 pc. Aims. CO observations show that the filament has an intriguing velocity field with several velocity components around the filament. In this paper, we study the velocity structure in detail, to quantify possible mass accretion rate onto the filament, and study the masses of the cold cores located in the filament. Methods. We have carried out line observations of several molecules, including CO isotopologues, HCO+, HCN, and CS with the Osaka 1.85 m telescope and the Nobeyama 45 m telescope. The spectral line data are used to derive velocity and column density information. Results. The observations reveal several velocity components in the field, with strongest line emission concentrated to velocity range ~[3,5] km s-1. The column density of molecular hydrogen along the filament varies from 1.0 to 2.3 × 1022cm2. We have examined six cold clumps from the central part of the filament. The clumps have masses in the range 10−20M⊙ (~ 70 M⊙ in total) and are close to or above the virial mass. Furthermore, the main filament is heavily fragmented and most of the substructures have a mass lower than or close to the virial mass, suggesting that the filament is dispersing as a whole. Position-velocity maps of 12CO and 13CO lines indicate that at least one of the striations is kinematically connected to two of the clumps, potentially indicating mass accretion from the striation onto the main filament. We tentatively estimate the accretion rate to be Ṁ = 2.23 × 10-6M⊙/ yr. Conclusions. Our line observations have revealed two or possibly three velocity components connected to the filament G82.65-2.00 and putative signs of mass accretion onto the filament. The line observations combined with Herschel and WISE maps suggest a possible collision between two cloud components.


2015 ◽  
Vol 11 (S315) ◽  
pp. 53-60
Author(s):  
Doris Arzoumanian ◽  
Philippe André ◽  
François Boulanger

AbstractRecent Herschel and Planck observations of submillimeter dust emission revealed the omnipresence of filamentary structures in the interstellar medium (ISM). The ubiquity of filaments in quiescent clouds as well as in star-forming regions indicates that the formation of filamentary structures is a natural product of the physics at play in the magnetized turbulent cold ISM. An analysis of more than 270 filaments observed with Herschel in 8 regions of the Gould Belt, shows that interstellar filaments are characterized by a narrow distribution of central width sharply peaked at ~0.1 pc, while they span a wide column density range. Molecular line observations of a sample of these filaments show evidence of an increase in the velocity dispersion of dense filaments with column density, suggesting an evolution in mass per unit length due to accretion of surrounding material onto these star-forming filaments. The analyses of Planck dust polarization observations show that both the mean magnetic field and its fluctuations along the filaments are different from those of their surrounding clouds. This points to a coupling between the matter and the $\vec{B}$-field in the filament formation process. These observational results, derived from dust and gas tracers in total and polarized intensity, set strong constraints on our understanding of the formation and evolution of filaments in the ISM. They provide important clues on the initial conditions of the star formation process along interstellar filaments.


2021 ◽  
Vol 923 (1) ◽  
pp. 130
Author(s):  
Le Ngoc Tram ◽  
Thiem Hoang ◽  
Enrique Lopez-Rodriguez ◽  
Simon Coudé ◽  
Archana Soam ◽  
...  

Abstract Located in the Large Magellanic Cloud and mostly irradiated by the massive star cluster R136, 30 Doradus is an ideal target to test the leading theory of grain alignment and rotational disruption by RAdiative Torques (RATs). Here, we use publicly available polarized thermal dust emission observations of 30 Doradus at 89, 154, and 214 μm using SOFIA/HAWC+. We analyze the variation of the dust polarization degree (p) with the total emission intensity (I), the dust temperature (T d), and the gas column density (N H) constructed from Herschel data. The 30 Doradus complex is divided into two main regions relative to R136, namely North and South. In the North, we find that the polarization degree first decreases and then increases before decreasing again when the dust temperature increases toward the irradiating cluster R136. The first depolarization likely arises from the decrease in grain alignment efficiency toward the dense medium due to the attenuation of the interstellar radiation field and the increase in the gas density. The second trend (the increase of p with T d) is consistent with the RAT alignment theory. The final trend (the decrease of p with T d) is consistent with the RAT alignment theory only when the grain rotational disruption by RATs is taken into account. In the South, we find that the polarization degree is nearly independent of the dust temperature, while the grain alignment efficiency is higher around the peak of the gas column density and decreases toward the radiation source. The latter feature is also consistent with the prediction of rotational disruption by RATs.


2019 ◽  
Vol 490 (2) ◽  
pp. 2760-2778 ◽  
Author(s):  
Patrick K King ◽  
Che-Yu Chen ◽  
L M Fissel ◽  
Zhi-Yun Li

ABSTRACT It is well known that the polarized continuum emission from magnetically aligned dust grains is determined to a large extent by local magnetic field structure. However, the observed significant anticorrelation between polarization fraction and column density may be strongly affected, perhaps even dominated by variations in grain alignment efficiency with local conditions, in contrast to standard assumptions of a spatially homogeneous grain alignment efficiency. Here we introduce a generic way to incorporate heterogeneous grain alignment into synthetic polarization observations of molecular clouds (MCs), through a simple model where the grain alignment efficiency depends on the local gas density as a power law. We justify the model using results derived from radiative torque alignment theory. The effects of power-law heterogeneous alignment models on synthetic observations of simulated MCs are presented. We find that the polarization fraction-column density correlation can be brought into agreement with observationally determined values through heterogeneous alignment, though there remains degeneracy with the relative strength of cloud-scale magnetized turbulence and the mean magnetic field orientation relative to the observer. We also find that the dispersion in polarization angles-polarization fraction correlation remains robustly correlated despite the simultaneous changes to both observables in the presence of heterogeneous alignment.


2020 ◽  
Vol 495 (1) ◽  
pp. L1-L6 ◽  
Author(s):  
R J Ivison ◽  
J Richard ◽  
A D Biggs ◽  
M A Zwaan ◽  
E Falgarone ◽  
...  

ABSTRACT With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, ≈1 kpc. Occasionally, strong gravitational lensing by foreground galaxies or galaxy clusters has probed spatial scales 1–2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalizing hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at z = 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of ≈100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many z ∼ 2–3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sérsic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of ≈80 pc and a star formation rate of <3 M⊙ yr−1.


2017 ◽  
Vol 601 ◽  
pp. A55 ◽  
Author(s):  
Jérémy Chastenet ◽  
Caroline Bot ◽  
Karl D. Gordon ◽  
Marco Bocchio ◽  
Julia Roman-Duval ◽  
...  

Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims. We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods. We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (Yi: abundances of the grain species i; αsCM20, coefficient in the small carbon grain size distribution). Results. Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.


2021 ◽  
Vol 923 (1) ◽  
pp. L9
Author(s):  
Yasuo Doi ◽  
Kohji Tomisaka ◽  
Tetsuo Hasegawa ◽  
Simon Coudé ◽  
Doris Arzoumanian ◽  
...  

Abstract We investigate the internal 3D magnetic structure of dense interstellar filaments within NGC 1333 using polarization data at 850 μm from the B-fields In STar-forming Region Observations survey at the James Clerk Maxwell Telescope. Theoretical models predict that the magnetic field lines in a filament will tend to be dragged radially inward (i.e., pinched) toward the central axis due to the filament’s self-gravity. We study the cross-sectional profiles of the total intensity (I) and polarized intensity (PI) of dust emission in four segments of filaments unaffected by local star formation that are expected to retain a pristine magnetic field structure. We find that the filaments’ FWHMs in PI are not the same as those in I, with two segments being appreciably narrower in PI (FWHM ratio ≃0.7–0.8) and one segment being wider (FWHM ratio ≃1.3). The filament profiles of the polarization fraction (P) do not show a minimum at the spine of the filament, which is not in line with an anticorrelation between P and I normally seen in molecular clouds and protostellar cores. Dust grain alignment variation with density cannot reproduce the observed P distribution. We demonstrate numerically that the I and PI cross-sectional profiles of filaments in magnetohydrostatic equilibrium will have differing relative widths depending on the viewing angle. The observed variations of FWHM ratios in NGC 1333 are therefore consistent with models of pinched magnetic field structures inside filaments, especially if they are magnetically near-critical or supercritical.


2019 ◽  
Vol 629 ◽  
pp. A10 ◽  
Author(s):  
F. Bosco ◽  
H. Beuther ◽  
A. Ahmadi ◽  
J. C. Mottram ◽  
R. Kuiper ◽  
...  

Context. The formation process of high-mass stars (>8 M⊙) is poorly constrained, particularly the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores. Aims. We study the fragmentation of dense gas clumps, and trace the circumstellar rotation and outflows by analyzing observations of the high-mass (~500 M⊙) star-forming region IRAS 23033+5951. Methods. Using the Northern Extended Millimeter Array (NOEMA) in three configurations and the IRAM 30 m single-dish telescope at 220 GHz, we probe the gas and dust emission at an angular resolution of ~0.45′′, corresponding to 1900 au. Results. In the millimeter (mm) continuum emission, we identify a protostellar cluster with at least four mm-sources, where three of them show a significantly higher peak intensity well above a signal-to-noise ratio of 100. Hierarchical fragmentation from large to small spatial scales is discussed. Two fragments are embedded in rotating structures and drive molecular outflows, traced by 13CO (2–1) emission. The velocity profiles across two of the cores are similar to Keplerian but are missing the highest-velocity components close to the center of rotation, which is a common phenomena from observations like these, and other rotation scenarios are not excluded entirely. Position–velocity diagrams suggest protostellar masses of ~6 and 19 M⊙. Rotational temperatures from fitting CH3CN (12K− 11K) spectra are used for estimating the gas temperature and thereby also the disk stability against gravitational fragmentation, utilizing Toomre’s Q parameter. Assuming that the candidate disk is in Keplerian rotation about the central stellar object and considering different disk inclination angles, we identify only one candidate disk as being unstable against gravitational instability caused by axisymmetric perturbations. Conclusions. The dominant sources cover different evolutionary stages within the same maternal gas clump. The appearance of rotation and outflows of the cores are similar to those found in low-mass star-forming regions.


Author(s):  
Simon Casassus ◽  
Matías Vidal ◽  
Carla Arce-Tord ◽  
Clive Dickinson ◽  
Glenn J White ◽  
...  

Abstract Cm-wavelength radio continuum emission in excess of free-free, synchrotron and Rayleigh-Jeans dust emission (excess microwave emission, EME), and often called ‘anomalous microwave emission’, is bright in molecular cloud regions exposed to UV radiation, i.e. in photo-dissociation regions (PDRs). The EME correlates with IR dust emission on degree angular scales. Resolved observations of well-studied PDRs are needed to compare the spectral variations of the cm-continuum with tracers of physical conditions and of the dust grain population. The EME is particularly bright in the regions of the ρ Ophiuchi molecular cloud (ρ Oph) that surround the earliest type star in the complex, HD 147889, where the peak signal stems from the filament known as the ρ Oph-W PDR. Here we report on ATCA observations of ρ Oph-W that resolve the width of the filament. We recover extended emission using a variant of non-parametric image synthesis performed in the sky plane. The multi-frequency 17 GHz to 39 GHz mosaics reveal spectral variations in the cm-wavelength continuum. At ∼30 arcsec resolutions, the 17-20 GHz intensities follow tightly the mid-IR, Icm∝I(8 μm), despite the breakdown of this correlation on larger scales. However, while the 33-39 GHz filament is parallel to IRAC 8 μm, it is offset by 15–20 arcsec towards the UV source. Such morphological differences in frequency reflect spectral variations, which we quantify spectroscopically as a sharp and steepening high-frequency cutoff, interpreted in terms of the spinning dust emission mechanism as a minimum grain size acutoff ∼ 6 ± 1 Å that increases deeper into the PDR.


Sign in / Sign up

Export Citation Format

Share Document