scholarly journals Rieger-type periodicity in the total irradiance of the Sun as a star during solar cycles 23-24

Author(s):  
E. Gurgenashvili ◽  
T. V. Zaqarashvili ◽  
V. Kukhianidze ◽  
A. Reiners ◽  
R. Oliver ◽  
...  

Dips in the total irradiance of up to 0.2 % and lasting typically 10 days are now well known to be caused by the transit of dark sunspots across the photospheric disc. The large bright magnetic faculae usually associated with spots cause irradiance increases of comparable magnitude although the form of their signal is more subtle. Radiometry from five satellites beginning in late 1978 indicates a minimum in irradiance at the epoch of lowest magnetic activity between solar cycles 21 and 22. Analysis of these radiometric measurements indicates that this irradiance decline between about 1981 and 1986 was caused mainly by decay in the excess radiation of bright faculae in the magnetic network outside of active regions. Empirical models of irradiance modulation extending back to 1874 indicate that the Sun is typically about 0.05 % brighter at activity maximum than at minimum.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2021 ◽  
Vol 44 ◽  
pp. 100-106
Author(s):  
A.K. Singh ◽  
◽  
A. Bhargawa ◽  

Solar-terrestrial environment is manifested primarily by the physical conditions of solar interior, solar atmosphere and eruptive solar plasma. Each parameter gives unique information about the Sun and its activity according to its defined characteristics. Hence the variability of solar parameters is of interest from the point of view of plasma dynamics on the Sun and in the interplanetary space as well as for the solar-terrestrial physics. In this study, we have analysed various solar transients and parameters to establish the recent trends of solar activity during solar cycles 21, 22, 23 and 24. The correlation coefficients of linear regression of F10.7 cm index, Lyman alpha index, Mg II index, cosmic ray intensity, number of M & X class flares and coronal mass ejections (CMEs) occurrence rate versus sunspot number was examined for last four solar cycles. A running cross-correlation method has been used to study the momentary relationship among the above mentioned solar activity parameters. Solar cycle 21 witnessed the highest value of correlation for F10.7 cm index, Lyman alpha index and number of M-class and X-class flares versus sunspot number among all the considered solar cycles which were 0.979, 0.935 and 0.964 respectively. Solar cycle 22 recorded the highest correlation in case of Mg II index, Ap index and CMEs occurrence rate versus sunspot number among all the considered solar cycles (0.964, 0.384 and 0.972 respectively). Solar cycle 23 and 24 did not witness any highest correlation compared to solar cycle 21 and 22. Further the record values (highest value compared to other solar three cycles) of each solar activity parameters for each of the four solar cycles have been studied. Here solar cycle 24 has no record text at all, this simply indicating that this cycle was a weakest cycle compared to the three previous ones. We have concluded that in every domain solar 24 was weaker to its three predecessors.


2019 ◽  
Vol 486 (4) ◽  
pp. 4671-4685 ◽  
Author(s):  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
Yuming Wang ◽  
Zavkiddin Mirtoshev ◽  
Jie Zhang ◽  
...  

ABSTRACT Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycles 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications for the study of solar-type stars.


1989 ◽  
Vol 162 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Atila �zg�� ◽  
Ayten D�zgelen
Keyword(s):  
The Sun ◽  

2001 ◽  
Vol 203 ◽  
pp. 78-85
Author(s):  
R. R. Radick

The variability of several dozen stars similar to the Sun in mass, age, and average activity has been monitored regularly in chromospheric Ca II HK emission for over three decades, and photometrically for over fifteen years. Larger samples have been observed less comprehensively. Analogous solar time series exist. A comparison of solar variability with its stellar analogs indicates that the Sun's current behavior is not unusual among sunlike stars. Both solar models and stellar measurements suggest that a true luminosity variation underlies the cyclic total irradiance changes observed on the Sun.


2017 ◽  
Vol 608 ◽  
pp. A87 ◽  
Author(s):  
D. Salabert ◽  
R. A. García ◽  
A. Jiménez ◽  
L. Bertello ◽  
E. Corsaro ◽  
...  

We study the variability of solar activity using new photospheric proxies originally developed for the analysis of stellar magnetism with the CoRoT and Kepler photometric observations. These proxies were obtained by tracking the temporal modulations in the observations associated with the spots and magnetic features as the Sun rotates. We analyzed 21 yr of observations, spanning solar cycles 23 and 24, collected by the space-based photometric VIRGO and radial velocity GOLF instruments on board the SoHO satellite. We then calculated the photospheric activity proxy Sph is for each of the three VIRGO photometers and the associated Svel proxy from the radial velocity GOLF observations. Comparisons with several standard solar activity proxies sensitive to different layers of the Sun demonstrate that these new activity proxies, Sph and Svel, provide a new manner to monitor solar activity. We show that both the long- and short-term magnetic variabilities respectively associated with the 11-yr cycle and the quasi-biennial oscillation are well monitored, and that the magnetic field interaction between the subsurface, photosphere, and chromosphere of the Sun was modified between Cycle 24 and Cycle 23. Furthermore, the photometric proxies show a wavelength dependence of the response function of the solar photosphere among the three channels of the VIRGO photometers, providing inputs for the study of the stellar magnetism of Sun-like stars.


Author(s):  
B. Rezvantsev

The proximity of the three ancient sanctuaries to each other on the flat top of the Table Mountain against the background of the sacred peaks of Kazbek and Tsey-Loam, the opportunity to observe the sunrises and sunsets in the highlands of the Caucasus, cosmogonic myths, all this gave an assumption about the astronomical functions of these sanctuaries. The purpose of the study was to prove that these ancient sanctuaries were used by the priests to determine the key moments in the annual cycle of the Sun and were a calendar. This is proved by using special computer programs and calculators that determine the azimuth and altitude of the Sun; instrumental observations and measurements on the ground. It is established that the shrines of Myat-Seli and Myater-Dyal on Table Mountain in Ingushetia are a complex of medieval solar near-horizon observatories. And it is hypothesized that these sanctuaries were built on the site from which solar cycles were observed from about the beginning of the 1st millennium BC. This work also provides prerequisites for determining various astronomical observations from sanctuaries and the presence of other ancient observatories in the Caucasus. A method has been developed for searching for prehistoric solar, lunar and stellar near-horizon observatories.


2021 ◽  
pp. 3-9
Author(s):  
Sergey Yazev ◽  
Maria Ulianova ◽  
Elena Isaeva

The paper provides statistical data on solar activity complexes (ACs) observed in solar cycle 21. From the synoptic charts for the 1976–1986 sunspot activity, we have detected the regions where the sunspot generation was observed at least through three Carrington Rotations (CRs). These regions were identified as AC cores. We have compiled an AC catalogue. ACs are shown to evolve quasi-periodically, in pulses that are 15–20 rotations long. We have analyzed the North-South asymmetry in the AC location. In cycle 21, 90 % of the proton flares that affected the natural environment are shown to have occurred in ACs. We note a tendency for AC activity to decrease, as well as the manifestation of the Gnevyshev—Ohl rule in AC properties, in solar cycles 21–24.


Sign in / Sign up

Export Citation Format

Share Document