scholarly journals Computational aeroacoustics of the EAA benchmark case of an axial fan

Acta Acustica ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 22
Author(s):  
Stefan Schoder ◽  
Clemens Junger ◽  
Manfred Kaltenbacher

This contribution benchmarks the aeroacoustic workflow of the perturbed convective wave equation and the Ffowcs Williams and Hawkings analogy in Farassat’s 1A version for a low-pressure axial fan. Thereby, we focus on the turbulence modeling of the flow simulation and mesh convergence concerning the complete aeroacoustic workflow. During the validation, good agreement has been found with the efficiency, the wall pressure sensor signals, and the mean velocity profiles in the duct. The analysis of the source term structures shows a strong correlation to the sound pressure spectrum. Finally, both acoustic sound propagation models are compared to the measured sound field data.

2021 ◽  
Vol 9 (9) ◽  
pp. 934
Author(s):  
Alena Zakharenko ◽  
Mikhail Trofimov ◽  
Pavel Petrov

Numerous sound propagation models in underwater acoustics are based on the representation of a sound field in the form of a decomposition over normal modes. In the framework of such models, the calculation of the field in a range-dependent waveguide (as well as in the case of 3D problems) requires the computation of normal modes for every point within the area of interest (that is, for each pair of horizontal coordinates x,y). This procedure is often responsible for the lion’s share of total computational cost of the field simulation. In this study, we present formulae for perturbation of eigenvalues and eigenfunctions of normal modes under the water depth variations in a shallow-water waveguide. These formulae can reduce the total number of mode computation instances required for a field calculation by a factor of 5–10. We also discuss how these formulae can be used in a combination with a wide-angle mode parabolic equation. The accuracy of such combined model is validated in a series of numerical examples.


2020 ◽  
Vol 28 (04) ◽  
pp. 2050029
Author(s):  
C. J. Zhang ◽  
J. R. WU ◽  
Z. D. Zhao ◽  
L. Ma ◽  
E. C. Shang

Acoustical properties of the sea bottom can be described using geoacoustic (GA) models. Most existing propagation models use GA parameters as the bottom properties. It is difficult to obtain GA parameters for a layered bottom because of inter parameter coupling. These problems can be solved by inverting the model-independent reflective parameters P and Q. For a multilayered bottom, a sound field computation model, RamPQ, is developed using the mapping of GA and (P, Q) spaces. The mean square error of the transmission loss in numerical simulations and experimental data for low-frequency sound propagation are employed to validate RamPQ and demonstrate the performance of the model.


2005 ◽  
Vol 127 (2) ◽  
pp. 234-241 ◽  
Author(s):  
John M. Prospathopoulos ◽  
Spyros G. Voutsinas

The prediction of noise emitted from operating wind turbines is important to planners in order to avoid the possibility of surpassing the allowable limits close to residential areas. To this end, the wave equation is solved, taking into account the atmospheric and ground characteristics that affect sound propagation. In the present paper, a ray tracing methodology capable of performing axisymmetric calculations of the sound field around an isolated source is used. The methodology simulates all the main physical mechanisms that influence sound propagation and performs calculations for the whole range of acoustic frequencies. In the case of more sources, a quasi-3D calculation is implemented, superposing the contributions from all sources. Application to single wind turbines is validated with available measurements. The effect of various parameters such as ground impedance, temperature, humidity, turbulence, and wind velocity is investigated for an isolated wind turbine as well as for wind parks. It is shown that ground and atmospheric absorption are important at the low and high frequency ranges, respectively. In flat terrain cases, simple propagation models may also give satisfactory predictions of the overall sound pressure levels. However, in complex terrain cases, the wind velocity and the relief of the topography can significantly affect noise propagation, suggesting the necessity for using sophisticated propagation models, such as the current one.


Author(s):  
Y Wu ◽  
X Zhu ◽  
Z Du

A developed plate stator model with and without trailing edge blowing (TEB) is studied using experimental methods. Wake characteristics of flow over the stator in the three-dimensional wake regimes are studied using hot-wire anemometry (HWA) and particle image velocimetry (PIV) techniques. First, the mean velocity profiles have been measured in the wake of the stator using HWA. Four wake characteristics have been obtained through momentum thickness judgments: pure wake, weak wake, momentumless wake, and jet. These velocity profiles show some differences in momentum deficit for the four cases. Then, the velocity spectra of the pure wake and momentumless wake obtained through the HWA measurements showed that TEB can eliminate the shedding vortex of the stator. Characteristic length scales based on the wake turbulent intensity profiles showed that the momentumless wake can reduce the wake width and depth. PIV measurement is carried out to measure the flow field of the four wakes. Finally, the application of TEB approaching momentumless wake status is used on an industrial ventilation low-pressure axial fan to assess noise reduction. The results show that TEB can make the outlet of the stator uniform, reduce velocity fluctuation, destroy the vorticity structure downstream of the stator, and reduce interaction noise level of the stator and rotor.


1988 ◽  
Vol 110 (4) ◽  
pp. 545-551 ◽  
Author(s):  
A. Cummings ◽  
I.-J. Chang

A quasi one-dimensional analysis of sound transmission in a flow duct lined with an array of nonlinear resonators is described. The solution to the equations describing the sound field and the hydrodynamic flow in the neighborhood of the resonator orifices is performed numerically in the time domain, with the object of properly accounting for the nonlinear interaction between the acoustic field and the resonators. Experimental data are compared to numerical computations in the time domain and generally very good agreement is noted. The method described here may readily be extended for use in the design of exhaust mufflers for internal combustion engines.


2017 ◽  
Vol 21 (suppl. 3) ◽  
pp. 553-564
Author(s):  
Johannes Walter ◽  
Dieter Wurz ◽  
Stefan Hartig ◽  
Martin Gabi

Axial fans are used in power plants for fresh air supply and flue gas transport. A typical configuration consists of an axial fan and annular diffuser which connects the fan to the following piping. In order to achieve a high efficiency of the con-figuration, not only the components have to be optimized but also their interaction. The present study focuses on the diffuser of the configuration. Experiments are performed on a diffuser-piping configuration to investigate the influence of the velocity profile at the fan outlet on the pressure recovery of the configuration. Two different diffuser inlet profiles are generated, an undisturbed profile and a profile with the typical outlet characteristics of a fan. The latter is generated by the superposition of screens in the inlet zone. The tests are conducted at a high Reynolds number (Re ? 4?105). Mean velocity profiles and wall shear stresses are measured with hydraulic methods (Prandtl and Preston tubes). The results show that there is a lack of momentum at the outer wall of the diffuser and high shear stresses at the inner wall in case of the undisturbed inflow profile. For the typical fan outlet profile it is vice versa. There are high wall shear stresses at the outer wall while the boundary layer of the inner wall lacks momentum. The pressure recovery of the undisturbed inflow configuration is in good agreement with other studies.


2021 ◽  
Vol 3 (397) ◽  
pp. 97-114
Author(s):  
A. Kleschev ◽  

Object and purpose of research. This paper obtains solutions and performs estimations of characteristics of sound reflection and scattering by ideal and elastic bodies of various shapes (analytical and non-analytical) near media interface, or underwater sonic channel, or in a planar waveguide with a solid elastic bottom. Materials and methods. The harmonic signals are investigated with the method of normal waves based on the phase velocity of signal propagation, and impulse signals related to the energy transfer are studied using the method of real and imaginary sources and scatterers based on the group velocity of propagation. Main results. The scattered sound field is calculated for ideal spheroids (elongated and compressed) at fluid – ideal medium interface. The spectrum of a scattered impulse signal is calculated for a body placed in a sonic channel. First reflected impulses are found for an ideal spheroid in a planar waveguide with anisotropic bottom. Conclusion. In the studies of diffraction characteristics of bodies at media interfaces it was found that the main contribution to scattered field is given by interference of scattered fields rather than interaction of scatterers (real or imaginary). It is shown that at long distances the spectral characteristics of the channel itself have a prevalent role. When impulse sound signals in the planar waveguide are used, it is necessary to apply the method of real and imaginary sources and scatterers based on the group velocity of sound propagation.


Author(s):  
Leiyong Jiang

Based on the previous benchmark studies on combustion, scalar transfer and radiation models, a critical evaluation of turbulence models in a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers has been performed. Results obtained from six turbulence models are presented and compared in detail with a comprehensive database obtained from a series of experimental measurements. It is found that the Reynolds stress model (RSM), a second moment closure, is superior over the five popular eddy-viscosity two-equation models. Although the main flow patterns are captured by all six turbulence models, only the RSM is able to successfully predict the lengths of both recirculation zones and give fairly accurate predictions for mean velocity, temperature, CO2 and CO mole fractions, as well as turbulence kinetic energy in the combustor chamber. In addition, the realizable k-ε (Rk-ε) model illustrates better performance than four other two-equation models and can provide comparable results to those from the RSM for the configuration and operating conditions considered in the present study.


2014 ◽  
Vol 577 ◽  
pp. 1198-1201
Author(s):  
Zhang Liang ◽  
Chun Xia Meng ◽  
Hai Tao Xiao

The physical characteristics are compared between shallow and deep water, in physics and acoustics, respectively. There is a specific sound speed profile in deep water, which is different from which in shallow water, resulting in different sound propagation law between them. In this paper, the sound field distributions are simulated under respective typical sound speed profile. The color figures of sound intensity are obtained, in which the horizontal ordinate is distance, and the vertical ordinate is depth. Then we can get some important characteristics of sound propagation. The results show that the seabed boundary is an important influence on sound propagation in shallow water, and sound propagation loss in deep water convergent zone is visibly less than which in spherical wave spreading. We can realize the remote probing using the acoustic phenomenon.


Author(s):  
Michael Bartelt ◽  
Juan D. Laguna ◽  
Joerg R. Seume

One of the greatest challenges in modern aircraft propulsion design is the reduction of the engine noise emission in order to develop quieter aircrafts. In the course of a current research project, the sound transport in low pressure turbines is investigated. For the corresponding experimental measurements, a specific acoustic excitation system is developed which can be implemented into the inlet of a turbine test rig and into an aeroacoustic wind tunnel. This allows for an acoustic mode generation and a synthesis of various sound source patterns to simulate typical turbomachinery noise sources such as rotor-stator interaction, etc. The paper presents the acoustical and technical design methodology in detail and addresses the experimental options of the system. Particular attention is paid to the design and the numerical optimization of the acoustic excitation units. To validate the sound generator during operation, measurements are performed in an aeroacoustic wind tunnel. For this purpose, an in-duct microphone array with a specific beamforming algorithm for hard-walled ducts is developed and applied to identify the source locations. The synthetically excited sound fields and the propagating acoustic modes are measured and analyzed by means of modal decomposition techniques. The measurement principles and the results are discussed in detail and it is shown that the intended sound source is produced and the intended sound field is excited. This paper shall contribute to help guide the development of excitation systems for aeroacoustic experiments to better understanding the physics of sound propagation within turbomachines.


Sign in / Sign up

Export Citation Format

Share Document