scholarly journals Sedimentary characterization of the carbonate source rock of Upper Kimmeridgian Parnac Formation of the Aquitaine Basin (Quercy area)

2017 ◽  
Vol 188 (5) ◽  
pp. 32 ◽  
Author(s):  
Laura Bastianini ◽  
Bruno Caline ◽  
Guilhem Hoareau ◽  
Cédric Bonnel ◽  
Mathieu Martinez ◽  
...  

The main source rock (SR) of the Aquitaine Basin, the most important oil province in France, corresponds to organic-rich marine limestones of Upper Kimmeridgian age (Lons Formation in the Béarn area and Parnac Formation in the Quercy area). In order to better characterize their depositional environment, in particular the conditions of accumulation and preservation of organic-matter, a sedimentological, micropaleontological and geochemical study of the Crayssac section (Quercy) has been performed. Organic-rich sediments are argillaceous limestones (65 to 99% CaCO3) organized in repetitive beds of up to 1-m thickness. Their total organic matter content reaches up to 15 wt.%, and in this SR kerogen is type of II and immature. Microfauna content, the lack of barrier facies and the control of the wave action base over the depositional environments reflect deposition in an open marine type homoclinal ramp. Strong similarities with Kimmeridgian organic-rich limestones of the Middle East (Hanifa Formation) suggest that the Parnac Formation could act as an analogue of this prolific SR.

2020 ◽  
Vol 45 (5) ◽  
Author(s):  
T. A. Adedosu ◽  
S. A. Alao ◽  
T.R. Ajayi ◽  
A. Akinlua

Gombe Formation is one of the promising potential source-rock of petroleum in the Gongola basin based on its appreciable amount of organic matter. The present study is therefore aimed at evaluating the hydrocarbon potential of Gombe Formation. Ditch-cutting samples were collected from the depth of 731.5 m to 1554.5 m from Gombe Formation that penetrated the Kolmani River-1 well. The source-rock potential was evaluated based on kerogen analysis and soluble organic matter content using Fourier Transform- Infra red spectroscopic (FT-IR) and Gas chromatography-Mass spectrometric (GC-MS) techniques respectively. There is presence of peak at 900-1000 cm-1 which is due to CH2 rocking vibration in long chain aliphatic substances, which is characteristic of liptinite macerals indicating good potential source-rock for oil and gas. The n-alkane ranges from C11-C33 maximizing at nC16 which suggests that the organic matter are majorly derived from marine organic matter. The Pr/Ph (1.49-1.92) shows that the organic matter was deposited under sub-oxic condition. The distribution of hopanes, homohopanes (C27-C29) steranes, (C0-C4) alkylated naphthalenes and (C0-C3) alkylated phenanthrenes indicate the presence of angiosperm, gymnosperm, algae, marine and bacteria input to the organic matter contained in the samples. Also the plot of DBT/P vs. Pr/Ph classifies the samples into zone 3 (i.e. marine shale and other lacustrine). Various maturity parameters computed from saturate biomarker and polycyclic aromatic hydrocarbon distributions shows that the samples are low mature with the moderately mature zone at the bottom (>1408.2 m) of Gombe Formation. In conclusion, the kerogen was probably derived from type II/III organic matter capable of generating both oil and gas and the moderately mature zone lies at the bottom of the Formation. Key words: Lacustrine, Gombe formation, Maturity, Hydrocarbon, Kerogen


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 435
Author(s):  
Sushmita Hossain ◽  
Takashi Ishiyama ◽  
Shoichi Hachinohe ◽  
Chiaki T. Oguchi

The leaching behavior of arsenic (As), lead (Pb), nickel (Ni), iron (Fe), and manganese (Mn) was investigated from subsurface core sediment of marine and nonmarine depositional environments in central Kanto Plain, Japan. A four-step sequential extraction technique was adopted to determine the chemical speciation, potential mobility, and bioavailability of metals under natural conditions in variable depositional environments. In addition, a correlation of these properties with pore water and total metal content was carried out. The concentration of As in pore water was found to be 2–3 times higher than the permissible limit (10 µg/L) for drinking water and leachate in fluvial, transitional, and marine environments. The trend of potential mobile fractions of As, Pb, and Ni showed Fe–Mn oxide bound > carbonate bound > ion exchangeable bound > water soluble in the fluvial environment. However, in the marine environment, it showed Fe–Mn oxide bound > water soluble > carbonate bound > ion exchangeable bound for As. The leaching of As in this fluvial environment is due to the organic matter-mediated, reductive dissolution of Fe–Mn oxide bound, where Mn is the scavenger. The amount of total content of As and sulfur (S) in transitional sediment reflects an elevated level of leachate in pore water, which is controlled by S reduction. However, the leaching of As in marine sediment is controlled by pH and organic matter content.


Author(s):  
O. A. Lipatnikova

The study of heavy metal speciation in bottom sediments of the Vyshnevolotsky water reservoir is presented in this paper. Sequential selective procedure was used to determine the heavy metal speciation in bottom sediments and thermodynamic calculation — to determine ones in interstitial water. It has been shown that Mn are mainly presented in exchangeable and carbonate forms; for Fe, Zn, Pb и Co the forms are related to iron and manganese hydroxides is played an important role; and Cu and Ni are mainly associated with organic matter. In interstitial waters the main forms of heavy metal speciation are free ions for Zn, Ni, Co and Cd, carbonate complexes for Pb, fulvate complexes for Cu. Effects of particle size and organic matter content in sediments on distribution of mobile and potentially mobile forms of toxic elements have been revealed.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 635
Author(s):  
Shihu Zhao ◽  
Yanbin Wang ◽  
Yong Li ◽  
Honghui Li ◽  
Zhaohui Xu ◽  
...  

Tarim Basin is the largest Petroliferous basin in China, while its shale gas development potential has not been fully revealed. The organic-rich black shale in middle Ordovician Heituao Formation from Tadong low uplift of Tarim Basin has been considered as an important source rock and has the characteristic of large thickness, high organic matter content and high thermal maturity degree. To obtain its development potential, geochemical, mineralogical and mechanics research is conducted based on Rock-Eval pyrolysis, total organic carbon (TOC), X-ray diffraction (XRD) and uniaxial compression experiments. The results show that: (1) the TOC content ranges between 0.63 and 2.51 wt% with an average value of 1.22 wt%, the Tmax values are 382–523 °C (average = 468.9 °C), and the S2 value is relatively low which ranges from 0.08 to 1.37 mg HC/g rock (averaging of 0.42 mg HC/g rock); (2) the organic matter of Heituao shale in Tadong low uplift show poor abundance as indicated by low S2 value, gas-prone property, and post mature stage (stage of dry gas). (3) Quartz is the main mineral component in Heituao shale samples, accounting for 26–94 wt% with an average of 72 wt%. Additionally, its Young’s modulus ranges from 20.0 to 23.1 GPa with an average of 21.2 GPa, Poisson’s ratio ranges between 0.11 and 0.21 (average = 0.15); (4) the fracability parameter of brittleness index (BI) ranges between 0.28 and 0.99 (averaging of 0.85), indicating good fracability potential of Heituao shale of Tadong low uplift and has the potential for shale gas development. This study reveals the shale gas accumulation potential in middle Ordovician of the Tarim Basin, and beneficial for future exploration and production practice.


Sign in / Sign up

Export Citation Format

Share Document