scholarly journals Influence of liberation of sulphide minerals on flotation of sedimentary copper ore

2017 ◽  
Vol 18 ◽  
pp. 01025
Author(s):  
Alicja Bakalarz ◽  
Magdalena Duchnowska ◽  
Andrzej Luszczkiewicz

Ore liberation is one of the most important parameter in mineral processing, especially in flotation. To separate the valuable components from gangue minerals, it is necessary to liberate one from others. It is achieve primarily through crushing and grinding. These stages are one of the most expensive of mineral production. It is important to determine the adequate mineral liberation which would result in huge savings in the overall cost of flotation plant. The aim of the paper was the analysis of the influence of milling time on the laboratory flotation of the copper ore from stratiform Polish deposit. Three different milling time of copper ore in laboratory ball mill was applied. The flotation results were presented as the recovery-recovery and grade-recovery upgrading curves. The liberation of sulphides and the particle size of sulphides in flotation product were analysed and compared.

2020 ◽  
Vol 855 ◽  
pp. 34-39
Author(s):  
Suprapedi ◽  
Muljadi ◽  
Priyo Sardjono ◽  
Ramlan Ramlan

A bonded permanent magnet of Barium hexa Ferrite has been made using powder BaFe12O19 (commercial ferrite) and a polymer of bakelite powder as binder. The composition of bakelite was varried 5% wt. The preparation of sample was begun with mass weighing for each material, then mixed together using ball mill for 1, 6 and 12 hours and using aquades as milling media. The mixed powder is dried in an oven at 110 °C for 4 hours, then the particle size distribution was measured. After that, the dried sample powder was pressed to form a pellet at pressure 40 MPa and temperature about 160 °C for 20 minutes. The characterization of sample pellet was done such as measurement of bulk density, hardness , magnetic properties using VSM and anylisis of microstructure using SEM. The results of the characterization show that the density and magnetic properties tend to increase with increasing of milling time, where the highest density, hardness and highest magnetic properties are achieved at sample with milling time for 12 hours. The value of magnetic properties at this condition are flux magnetic of 530 Gauss, remenance of 3100 Gauss, coercivity of 1,10 kOe.


2013 ◽  
Vol 833 ◽  
pp. 75-79 ◽  
Author(s):  
Xin Xin He ◽  
Guo You Gan ◽  
Ji Kang Yan ◽  
Jing Hong Du ◽  
Jia Ming Zhang ◽  
...  

The ZnO varistor ceramics were fabricated through microwave sintering at 800~1150°C using ZnO powder doped and undoped TiO2 prepared by planetary ball mill. And the effects of milling time, sintering temperature and doping on microwave sintering technique have been studied. The result shows that the powder is more homogeneously and with smaller particle size with the increasing of milling time, therefore the electric properties is improved. However the particle size and the electric properties tend towards stability after 20h milling time. The density and electric properties increase with the increasing of sintering temperature, but decrease sharply at 1100°C, so the best sintering temperature is 1100°C. Doping TiO2 improves the electric properties of ZnO, however the electric properties decrease with more than 2.5% doping.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2085
Author(s):  
Yang Mo Gu ◽  
Seon Young Park ◽  
Ji Yeon Park ◽  
Byoung-In Sang ◽  
Byoung Seong Jeon ◽  
...  

The impact of attrition ball-mill pretreatment on food waste particle size, soluble chemical oxygen demand (SCOD), biochemical methane potential, and microbial community during anaerobic digestion was investigated based on milling speed and time. The uniformity of particle size improved with increasing milling speed and time. The SCOD of the pretreated samples increased to 4%, 7%, and 17% at the speeds of 150, 225, and 300 rpm, respectively, compared to the control. Milling time did not significantly change the SCOD. The cumulative methane productions of 430, 440, and 490 mL/g-VS were observed at the speeds of 150, 225, and 300 rpm, respectively, while the untreated sample exhibited the cumulative methane production of 390 mL/g-VS. Extended milling time did not improve methane production much. When the milling times of 10, 20, and 30 min were applied with the milling speed fixed at 300 rpm, the methane productions of 490, 510, and 500 mL/g-VS were observed respectively. Ball-mill pretreatment also increased the total volatile fatty acids. During the anaerobic digestion (AD) of ball-mill treated food waste, acetoclastic methanogens predominated, with a relative abundance of 48–49%. Interestingly, hydrogenotrophic methanogens were 1.6 times higher in the pretreated samples than those in the control. These results showed the potential of attrition ball milling as a food waste pretreatment for improving methane production.


2013 ◽  
Vol 686 ◽  
pp. 3-7
Author(s):  
M.Z. Borhan ◽  
A. Norhidayah ◽  
R. Ahmad ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

Several clinical studies have proved the triterpenes in this herb have therapeutic properties and posses significant to health such as antitumor and wound healing. Centella asiatica nanopowders (CANPs) have been produced via top down approach using Planetary Ball Mill (PBM) at 0.5, 4 and 8 hours of milling in optimized condition. CANPs have been characterized using Photo Correlation Spectroscopy (PCS), Field Emission Scanning Electron Microscope (FESEM) and High Performance Liquid Chromatography (HPLC). As a result significant reduction on size was observed as increased a milling time by comparing their z-Average (nm) and the morphology of CANPs exist in the agglomerated form. The HPLC results showed significant increase in concentration of asiatic acid by comparing the concentration of asiatic acid in extract of CANPs and coarse powders whereby the asiaticoside completely disappeared after milling. Thus, nanoherbal can be said as improving the extraction ratio of asiatic acid compared to the coarse powders due to the smaller particle size and larger surface area and the disappearance of asiaticoside still not completely understood.


2013 ◽  
Vol 795 ◽  
pp. 711-715 ◽  
Author(s):  
N.Z.F. Mukhtar ◽  
M.Z. Borhan ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

Ball milling is a top down approach and a method to reduce size of particle while Zeolite is a valuable inorganic materials having wide variety of applications. In this paper, ball milling of commercial synthetic Zeolite powder was studied with their time varied. Wet ball milling was selected as a potential means to decrease the particle size of Zeolite over dry grinding. The parameters that included in this study were rotational speed, balls to powder ratio, water to powder ratio and milling time. These nanozeolite were characterized via Zeta-sizer nanoseries of particle sizer, FESEM, and also FTIR. Results showed that commercial synthetic Zeolite powder with particle size larger than 45 μm may be reduced into the size range between 0.2 0.3 μm by planetary ball mill.


2017 ◽  
Vol 62 (3) ◽  
pp. 1689-1694 ◽  
Author(s):  
D. Saramak ◽  
S. Wasilewski ◽  
A. Saramak

AbstractCrushing processes taking place in high-pressure grinding rolls devices (HPGR) are currently one of the most efficient methods of hard ore size reduction in terms of the energy consumption. The HPGR products are characterized by a fine particle size and the micro-cracks formation in individual particles, which appears in downstream grinding processes, decreasing their energy consumption. The purpose of the paper was to analyze the effectiveness of a ball mill grinding process and flotation operations depending on the changeable conditions of run of the HPGR crushing process. The research programme carried out included crushing tests in the laboratory scale HPGR device at various settings of the operating pressure volume and selected qualitative properties of the feed material (i.e. particle size distribution). On the basis of obtained results the models, defining the grinding process effectiveness as a function of changeable conditions of HPGR process run, were determined. Based on these models the optimal grinding time in a ball mill was specified which is, in turn, the basis for optimization of operation the technological comminution circuits for a given material type. The obtained results proved that the application of HPGR devices in given copper ore comminution circuit may improve the effectiveness of downstream grinding process what leads to improvement of the entire circuit work efficiency through decreasing the process energy consumption and enhancing the product size reduction.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2007 ◽  
Vol 534-536 ◽  
pp. 1489-1492 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Jong Won Kum ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Pyuck Pa Choi ◽  
...  

Dispersion-strengthened copper with TiB2 was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at 650°C for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly


2014 ◽  
Vol 682 ◽  
pp. 32-34 ◽  
Author(s):  
N.S. Belousova ◽  
O.A. Goryaynova ◽  
E.V. Melnikova

In this paper the results of alumina aqueous suspension disaggregation with the help of bead and ball mills are shown. The changing of maximum particle size for50 wt. % and 90 wt. % of powder (from lowest to highest size) in suspension dispersed by a bead mill for one hour and ball mill for 48 hours was fixed. In order to achieve powder parameters given by the manufacturer disaggregating process sets was defined.


Sign in / Sign up

Export Citation Format

Share Document